Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399150

ABSTRACT

Graphite IG-110 is a synthetic polycrystalline material used as a neutron moderator in reactors. Graphite is inherently brittle and is known to exhibit a further increase in brittleness due to radiation damage at room temperature. To understand the irradiation effects on pre-existing defects and their overall influence on external load, micropillar compression tests were performed using in situ nanoindentation in the Transmission Electron Microscopy (TEM) for both pristine and ion-irradiated samples. While pristine specimens showed brittle and subsequent catastrophic failure, the 2.8 MeV Au2+ ion (fluence of 4.378 × 1014 cm-2) irradiated specimens sustained extensive plasticity at room temperature without failure. In situ TEM characterization showed nucleation of nanoscale kink band structures at numerous sites, where the localized plasticity appeared to close the defects and cracks while allowing large average strain. We propose that compressive mechanical stress due to dimensional change during ion irradiation transforms buckled basal layers in graphite into kink bands. The externally applied load during the micropillar tests proliferates the nucleation and motion of kink bands to accommodate the large plastic strain. The inherent non-uniformity of graphite microstructure promotes such strain localization, making kink bands the predominant mechanism behind unprecedented toughness in an otherwise brittle material.

2.
Nat Commun ; 14(1): 1754, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36990982

ABSTRACT

In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO3 host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials.

3.
ACS Appl Mater Interfaces ; 13(37): 44723-44732, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34495625

ABSTRACT

A primary mode of failure of thin-film coatings is the mismatch in thermal expansion coefficients of the substrate and the coating, which results in accumulation of interfacial stresses and ultimately in film delamination. While much attention has been devoted to modulation of interfacial bonding to mitigate delamination, current strategies are constrained in their generalizability and have had limited success in imbuing resistance to prolonged thermal cycling. We demonstrate here the incorporation of rigid thermal expansion compensators within polymeric films as a generalizable strategy for minimizing thermal mismatch with the substrate. Nanostructures of the isotropic negative thermal expansion (NTE) material HfV2O7 have been prepared based on the reaction of nanoparticulate precursors. The NTE behavior, derived from transverse oxygen displacement within the cubic structure, has been examined using temperature-variant powder X-ray diffraction, Raman spectroscopy, electron microscopy, and selected-area electron diffraction measurements. HfV2O7 initially crystallizes in a 3 × 3 × 3 superlattice but undergoes phase transformations to stabilize a cubic structure that exhibits strong and isotropic NTE with a coefficient of thermal expansion (CTE) = -6.7 × 10-6 °C-1 across an extended temperature range of 130-700 °C. Incorporation of HfV2O7 in a high-temperature thermoset polybenzimidazole enables the reduction of compressive stress by 67.3% for a relatively small loading of 26.6 vol % HfV2O7. Based on a composite model, we demonstrate that HfV2O7 can reduce the thermal expansion coefficient of polymer nanocomposite films, even at low volume fractions, as a result of its substantially higher elastic modulus compared to the continuous polymer matrix. By changing the volume fraction of HfV2O7, the overall coefficients of thermal expansion of the film can be tuned to match a range of substrates, thereby mitigating thermal stresses and resolving a fundamental challenge for high-temperature composites and nanocomposite coatings.

4.
ACS Appl Mater Interfaces ; 12(33): 37444-37453, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32698571

ABSTRACT

The search for new functional materials that combine high stability and efficiency with reasonable cost and ease of synthesis is critical for their use in renewable energy applications. Specifically in catalysis, nanoparticles, with their high surface-to-volume ratio, can overcome the cost implications associated with otherwise having to use large amounts of noble metals. However, commercialized materials, that is, catalytic nanoparticles deposited on oxide supports, often suffer from loss of activity because of coarsening and carbon deposition during operation. Exsolution has proven to be an interesting strategy to overcome such issues. Here, the controlled emergence, or exsolution, of faceted iridium nanoparticles from a doped SrTiO3 perovskite is reported and their growth preliminary probed by in situ electron microscopy. Upon reduction of SrIr0.005Ti0.995O3, the generated nanoparticles show embedding into the oxide support, therefore preventing agglomeration and subsequent catalyst degradation. The advantages of this approach are the extremely low noble metal amount employed (∼0.5% weight) and the catalytic activity reported during CO oxidation tests, where the performance of the exsolved SrIr0.005Ti0.995O3 is compared to the activity of a commercial catalyst with 1% loading (1% Ir/Al2O3). The high activity obtained with such low doping shows the possibility of scaling up this new catalyst, reducing the high cost associated with iridium-based materials.

5.
Nanoscale ; 12(10): 6144-6152, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32129785

ABSTRACT

The hollow core, concentric graphitic shells, and large surface area of the carbon nano-onion (CNO) make these carbon nanostructures promising materials for highly efficient catalytic reactions. Doping CNOs with heteroatoms is an effective method of changing their physical and chemical properties. In these cases, the configurations and locations of the incorporated dopant atoms must be a key factor dictating catalytic activity, yet determining a structural arrangement on the single-atom length scale is challenging. Here we present direct imaging of individual nitrogen and sulfur dopant atoms in CNOs, using an aberration-corrected scanning transmission electron microscopy (STEM) approach, combined with electron energy loss spectroscopy (EELS). Inspection of the statistics of dopant configuration and location in sulfur-, nitrogen-, and co-doped samples reveals dopant atoms to be more closely situated to defects in the graphitic shells for co-doped samples, than in their singly doped counterparts. Correlated with an increased activity for the oxygen reduction reaction in the co-doped samples, this suggests a concerted mechanism involving both the dopant and defect.

6.
Nanoscale ; 11(44): 21354-21363, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31674612

ABSTRACT

Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core-shell arrangement of VO2 and amorphous HfO2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V2O3/HfO2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO2 under ambient conditions. Free-standing cubic HfO2, otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV2O7. Variable temperature powder X-ray diffraction demonstrate that the prepared HfV2O7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds.

7.
ACS Nano ; 12(9): 9051-9059, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30160468

ABSTRACT

The creation of nanomaterials requires simultaneous control of not only crystalline structure and composition but also crystal shape and size, or morphology, which can pose a significant synthetic challenge. Approaches to address this challenge include creating nanocrystals whose morphologies echo their underlying crystal structures, such as the growth of platelets of two-dimensional layered crystal structures, or conversely attempting to decouple the morphology from structure by converting a structure or composition after first creating crystals with a desired morphology. A particularly elegant example of this latter approach involves the topotactic conversion of a nanoparticle from one structure and composition to another, since the orientation relationship between the initial and final product allows the crystallinity and orientation to be maintained throughout the process. Here we report a mechanism for creating hollow nanostructures, illustrated via the decomposition of ß-FeOOH nanorods to nanocapsules of α-Fe2O3, γ-Fe2O3, Fe3O4, and FeO, depending on the reaction conditions, while retaining single-crystallinity and the outer nanorod morphology. Using in situ TEM, we demonstrate that the nanostructured morphology of the starting material allows kinetic trapping of metastable phases with a topotactic relationship to the final thermodynamically stable phase.

SELECTION OF CITATIONS
SEARCH DETAIL