Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 125(40): 22239-22248, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34676020

ABSTRACT

Powder compaction-induced surface chemistry in metal oxide nanocrystal ensembles is important for very diverse fields such as triboelectrics, tribocatalysts, surface abrasion, and cold sintering of ceramics. Using a range of spectroscopic techniques, we show that MgO nanocube powder compaction with uniaxial pressures that can be achieved by gentle manual rubbing or pressing (p ≥ 5 MPa) excites energetic electron-hole pairs and generates oxygen radicals at interfacial defect structures. While the identification of paramagnetic O- radicals and their adsorption complexes with O2 point to the emergence of hole centers, triboemitted electrons become scavenged by molecular oxygen to convert into adsorbed superoxide anions O2 - as measured by electron paramagnetic resonance (EPR). By means of complementary UV-photoexcitation experiments, we found that photon energies in the range between 3 and 6 eV produce essentially the same EPR spectroscopic fingerprints and optical absorption features. To provide insights into this effect, we performed density functional theory calculations to explore the energetics of charge separation involving the ionization of low-coordinated anions and surface-adsorbed O2 - radicals at points of contact. For all selected configurations, charge transfer is not spontaneous but requires an additional driving force. We propose that a plausible mechanism for oxygen radical formation is the generation of significant surface potential differences at points of contact under loading as a result of the highly inhomogeneous elastic deformations coupled with the flexoelectric effect.

2.
Cryst Growth Des ; 21(8): 4674-4682, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34381312

ABSTRACT

Developing simple, inexpensive, and environmentally benign approaches to integrate morphologically well-defined nanoscale building blocks into larger high surface area materials is a key challenge in materials design and processing. In this work, we investigate the fundamental surface phenomena between MgO and water (both adsorption and desorption) with particles prepared via a vapor-phase process (MgO nanocubes) and a modified aerogel process (MgO(111) nanosheets). Through these studies, we unravel a strategy to assemble individual MgO nanoparticles into extended faceted single-crystalline MgO nanosheets and nanorods with well-defined exposed surfaces and edges. This reorganization can be triggered by the presence of H2O vapor or bulk liquid water. Water adsorption and the progressive conversion of vapor-phase grown oxide particles into hydroxides give rise to either one-dimensional or two-dimensional (1D or 2D) structures of high dispersion and surface area. The resulting Mg(OH)2 lamella with a predominant (001) surface termination are well-suited precursor structures for their topotactic conversion into laterally extended and uniform MgO(111) grain surface configurations. To understand the potential of polar (111) surfaces for faceting and surface reconstruction effects associated with water desorption, we investigated the stability of MgO(111) nanosheets during vacuum annealing and electron beam exposure. The significant surface reconstruction of the MgO(111) surfaces observed shows that adsorbate-free (111)-terminated surfaces of unsupported MgO nanostructures reconstruct rather than remain as charged planes of either three-fold coordinated O2- ion or Mg2+ ions. Thus, here we demonstrate the role water can play in surface formation and reconstruction by bridging wet chemical and surface science inspired approaches.

3.
J Am Ceram Soc ; 101(11): 4994-5003, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30333631

ABSTRACT

A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing-induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10-5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two-dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation-induced stabilization of (110) faces and step edges of the grain surfaces.

4.
Angew Chem Int Ed Engl ; 56(5): 1407-1410, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28005313

ABSTRACT

Water vapor is ubiquitous under ambient conditions and may alter the shape of nanoparticles. How to utilize water adsorption for nanomaterial functionality and structure formation, however, is a yet unexplored field. Herein, we report the use of water vapor to induce the self-organization of MgO nanocubes into regularly staggered one-dimensional structures. This transformation evolves via an initial alignment of the MgO cubes, the formation of intermediate elongated Mg(OH)2 structures, and their reconversion into MgO cubes arranged in staggered structures. Ab initio DFT modelling identifies surface-energy changes associated with the cube surface hydration and hydroxylation to promote the uncommon staggered stacked assembly of the cubes. This first observation of metal oxide nanoparticle self-organization occurring outside a bulk solution may pave novel routes for inducing texture in ceramics and represents a great test-bed for new surface-science concepts.

5.
Langmuir ; 31(9): 2770-6, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25668706

ABSTRACT

Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.

6.
Phys Chem Chem Phys ; 16(43): 23922-9, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25277485

ABSTRACT

Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron spectroscopic surface analysis we investigated the effect of surface composition and oxygen adsorption on the photoluminescence properties of vapor phase grown ZnO and MgO nanoparticles. On hydroxylated MgO nanoparticles as a reference system, intense photoluminescence features exclusively originate from surface excitons, the radiative deactivation of which results in collisional quenching in an O2 atmosphere. Conversely, on as-prepared ZnO nanoparticles a broad yellow emission feature centered at hνEm = 2.1 eV exhibits an O2 induced intensity increase. Attributed to oxygen interstitials as recombination centers this enhancement effect originates from adsorbate-induced band bending, which is pertinent to the photoluminescence active region of the nanoparticles. Annealing induced trends in the optical properties of the two prototypical metal oxide nanoparticle systems, ZnO and MgO, are explained by changes in the surface composition and underline that particle surface and interface changes that result from handling and processing of nanoparticles critically affect luminescence.

7.
Phys Chem Chem Phys ; 16(18): 8339-45, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24660222

ABSTRACT

Efficient use of highly dispersed metal oxides for lighting, energy conversion and catalysis requires knowledge about the impact of density and microstructure of the powders on the optical nanoparticle properties. For MgO nanocube powders we present a combined photoluminescence (PL) and electron paramagnetic resonance (EPR) approach which enables for samples of different aggregation states the quantification of the fractional powder volume that becomes illuminated with UV and visible light during the PL measurements. Using O2 as a PL emission quencher and - after light induced exciton separation and oxygen adsorption - as an EPR active adsorbate we observed clear aggregation dependent trends in PL emission quenching that originate from particle-particle contacts. Upon interaction of low coordinated surface elements with the surfaces of adjacent MgO nanocubes, which occurs even at powder consolidation levels that escape sorption analysis, the radiative decay of excited surface states becomes quenched down to 15% of the original intensity. Our results underline the critical role of microstructure and the aggregation state of a nanoparticle ensemble with respect to spectroscopic properties and related adsorption induced changes.

SELECTION OF CITATIONS
SEARCH DETAIL