Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cancer Cell Int ; 23(1): 204, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37716943

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) represents a significant clinical challenge. Chemotherapy remains the mainstay for a large part of TNBC patients, whereas drug resistance and tumor recurrence frequently occur. It is in urgent need to identify novel molecular targets for TNBC and develop effective therapy against the aggressive disease. METHODS: Immunohistochemistry was performed to examine the expression of HER3 in TNBC samples. Western blots were used to assess protein expression and activation. Cell proliferation and viability were determined by cell growth (MTS) assays. TCGA databases were analyzed to correlate HER3 mRNA expression with the clinical outcomes of TNBC patients. Specific shRNA was used to knockdown HER3 expression. IncuCyte system was utilized to monitor cell growth and migration. LIVE/DEAD Cell Imaging was to detect live and dead cells. HER3 recognition by our anti-HER3 monoclonal antibody (mAb) 4A7 was verified by ELISA, flow cytometry, and co-immunoprecipitation assays. Orthotopic tumor models were established in nude mice to determine the capability of TNBC cells forming tumors and to test if our mAb 4A7 could potentiate the antitumor activity of paclitaxel in vivo. RESULTS: Elevated expression of HER3 was observed in approximately half of the TNBC specimens and cell lines tested. Analyses of TCGA databases found that the TNBC patients with high HER3 mRNA expression in the tumors showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with low HER3 expression. Specific knockdown of HER3 markedly inhibited TNBC cell proliferation and mammosphere formation in vitro and tumor growth in vivo. Our mAb 4A7 abrogated heregulin (a ligand for HER3), but not SDF-1 (a ligand for CXCR4)-induced enhancement of TNBC cell migration. Combinations of 4A7 and the EGFR-tyrosine kinase inhibitor (TKI) gefitinib dramatically decreased the levels of phosphorylated HER3, EGFR, Akt, and ERK1/2 in TNBC cells and potently induced growth inhibition and cell death. Moreover, 4A7 in combination with paclitaxel exerted significant antitumor activity against TNBC in vitro and in vivo. CONCLUSIONS: Our data demonstrate that increased HER3 is an effective therapeutic target for TNBC and our anti-HER3 mAb (4A7) may enhance the efficacy of gefitinib or paclitaxel in TNBC.

2.
Cell Cycle ; : 1-20, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723865

ABSTRACT

Estrogen receptor (ER) α expression and associated signaling is a major driver of over two-thirds of all breast cancers (BC). ER targeting strategies are typically used as a first-line therapy in patients with steroid receptor positive (SR+) disease. Secondary resistance to anti-estrogenic agents may occur with clonal expansion and disease progression. Mechanisms underlying hormone resistance are an expanding field of significant translational importance. Cross-talk with other nuclear hormones, receptors, and signaling pathways, including thyroid hormones (TH) and their receptors (THRs), have been shown to promote endocrine therapy resistance in some studies. We have shown that TH replacement therapy (THRT) was independently and significantly associated with higher rates of relapse and mortality in SR positive (+), node-negative (LN-) BC patients, whereas it showed no association with outcomes in SR negative (-) patients. LN-, SR+ patients receiving THRT and tamoxifen had the worst outcomes, suggesting a pro-carcinogenic interaction that significantly and independently shortened survival and increased mortality. Using in vivo and in vitro models, we previously showed hormonal cross-talk, altered gene signaling, target gene activation, and resistance to tamoxifen in the presence of TH. In this report, we show TH ± E2 ± tamoxifen inhibits cell cycle control signaling, reduces apoptosis, and enhances cell proliferation, tumor growth, tamoxifen resistance, and clonal expansion. Mechanistically these changes involve numerous genes and pathways, including critical cell cycle regulatory proteins and genes identified using various molecular methods. These studies facilitate a greater mechanistic understanding of the biological and molecular impact of TH on SR+ BC.

3.
Breast Cancer Res ; 24(1): 42, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725493

ABSTRACT

BACKGROUND: Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS: We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS: In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS: Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/chemically induced , Breast Neoplasms/prevention & control , Female , Humans , Mice , Obesity/complications , Obesity/metabolism , Ovariectomy , Postmenopause , Rats , Rodentia , Tumor Burden , Weight Gain
4.
Mol Ther Oncolytics ; 21: 303-314, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34141868

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows promising antitumor activity in preclinical studies. However, the efficacy of recombinant TRAIL in clinical trials is compromised by its short serum half-life and low in vivo stability. Induction of endogenous TRAIL may overcome the limitations and become a new strategy for cancer treatment. Here, we discovered that metformin increased TRAIL expression and induced apoptosis in triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) cells. Metformin did not alter the expression of TRAIL receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Metformin-upregulated TRAIL was secreted into conditioned medium (CM) and found to be functional, since the CM promoted TNBC cells undergoing apoptosis, which was abrogated by a recombinant TRAIL-R2-Fc chimera. Moreover, blockade of TRAIL binding to DR4/DR5 or specific knockdown of TRAIL expression significantly attenuated metformin-induced apoptosis. Studies with a tumor xenograft model revealed that metformin not only significantly inhibited tumor growth but also elicited apoptosis and enhanced TRAIL expression in vivo. Collectively, we have demonstrated that upregulation of TRAIL and activation of death receptor signaling are pivotal for metformin-induced apoptosis in TNBC and NSCLC cells. Our studies identify a novel mechanism of action of metformin exhibiting potent antitumor activity via induction of endogenous TRAIL.

5.
Clin Cancer Res ; 27(2): 585-597, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33097494

ABSTRACT

PURPOSE: Thyroid disease is a frequent comorbidity in women with breast cancer, and many require thyroid hormone replacement therapy (THRT). We postulated that THRT has a deleterious clinical effect mechanistically through hormonal interactions, nuclear receptor cross-talk, and upregulation of high-risk breast cancer genes. EXPERIMENTAL DESIGN: Observational studies of patients with lymph node-negative (LN-) breast cancer (n = 820 and n = 160) were performed to test interactions between THRT and clinical, histologic, outcome, and treatment variables. Differences between the two cohorts include but are not limited to patient numbers, decades of treatment, duration of follow-up/treatment, tumor sizes, incidence, and type and dose/regimen of antihormonal and/or chemotherapeutic agents. In vivo and vitro models, in silico databases, and molecular methods were used to study interactions and define mechanisms underlying THRT effects. RESULTS: THRT significantly and independently reduced disease-free and breast cancer-specific overall survival of only the steroid receptor (SR)-positive (as compared with SR-negative) node-negative patients in both long-term observational studies. Patients with SR+ LN- breast cancer who received THRT and tamoxifen experienced the shortest survival of all treatment groups. A less potent interaction between THRT and aromatase inhibitors was noted in the second patient cohort. Using in vivo and in vitro models, TH administration enhanced estrogen and TH-associated gene expression and proliferation, nuclear colocalization of estrogen receptor and thyroid hormone receptor, and activation of genes used clinically to predict tumor aggression in SR+ breast cancer, including the IGF-IR, WNT, and TGFß pathways. CONCLUSIONS: We show clinically significant adverse interactions between THRT, estrogenic, and oncogenic signaling in patients with SR+ LN- breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Hormone Replacement Therapy/methods , Receptors, Estrogen/metabolism , Tamoxifen/therapeutic use , Thyroid Hormones/therapeutic use , Transcriptome/drug effects , Up-Regulation/drug effects , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cohort Studies , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Up-Regulation/genetics , Xenograft Model Antitumor Assays/methods
6.
IDCases ; 22: e00931, 2020.
Article in English | MEDLINE | ID: mdl-32884904

ABSTRACT

We describe a case of Cryptococcal choroiditis in a person with advanced HIV/AIDS. A 29-year-old male with AIDS presented with fever, photophobia, and ataxia secondary to cryptococcal and toxoplasma meningoencephalitis. Dilated fundoscopic examination revealed bilateral and multifocal posterior infiltrates consistent with cryptococcal choroiditis. Treatment with parenteral and intravitreal liposomal amphotericin B, oral flucytosine, and oral trimethoprim-sulfamethoxazole led to resolution of his symptoms and improvement in his vision. Our case documents a rare, intraocular opportunistic infection and highlights the importance of ophthalmologic examination in immunocompromised hosts with visual symptoms and invasive fungal infection. We discuss diagnostic and treatment considerations in cryptococcal choroiditis.

7.
Cancer Drug Resist ; 3(2): 179-198, 2020.
Article in English | MEDLINE | ID: mdl-35582612

ABSTRACT

Approximately 20% of invasive breast cancers have upregulation/gene amplification of the oncogene human epidermal growth factor receptor-2 (HER2/ErbB2). Of these, some also express steroid receptors (the so-called Luminal B subtype), whereas others do not (the HER2 subtype). HER2 abnormal breast cancers are associated with a worse prognosis, chemotherapy resistance, and sensitivity to selected anti-HER2 targeted therapeutics. Transcriptional data from over 3000 invasive breast cancers suggest that this approach is overly simplistic; rather, the upregulation of HER2 expression resulting from gene amplification is a driver event that causes major transcriptional changes involving numerous genes and pathways in breast cancer cells. Most notably, this includes a shift from estrogenic dependence to regulatory controls driven by other nuclear receptors, particularly the androgen receptor. We discuss members of the HER receptor tyrosine kinase family, heterodimer formation, and downstream signaling, with a focus on HER2 associated pathology in breast carcinogenesis. The development and application of anti-HER2 drugs, including selected clinical trials, are discussed. In light of the many excellent reviews in the clinical literature, our emphasis is on recently developed and successful strategies to overcome targeted therapy resistance. These include combining anti-HER2 agents with programmed cell death-1 ligand or cyclin-dependent kinase 4/6 inhibitors, targeting crosstalk between HER2 and other nuclear receptors, lipid/cholesterol synthesis to inhibit receptor tyrosine kinase activation, and metformin, a broadly inhibitory drug. We seek to facilitate a better understanding of new approaches to overcome anti-HER2 drug resistance and encourage exploration of two other therapeutic interventions that may be clinically useful for HER+ invasive breast cancer patients.

8.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046001

ABSTRACT

Obesity increases breast cancer mortality by promoting resistance to therapy. Here, we identified regulatory pathways in estrogen receptor-positive (ER-positive) tumors that were shared between patients with obesity and those with resistance to neoadjuvant aromatase inhibition. Among these was fibroblast growth factor receptor 1 (FGFR1), a known mediator of endocrine therapy resistance. In a preclinical model with patient-derived ER-positive tumors, diet-induced obesity promoted a similar gene expression signature and sustained the growth of FGFR1-overexpressing tumors after estrogen deprivation. Tumor FGFR1 phosphorylation was elevated with obesity and predicted a shorter disease-free and disease-specific survival for patients treated with tamoxifen. In both human and mouse mammary adipose tissue, FGF1 ligand expression was associated with metabolic dysfunction, weight gain, and adipocyte hypertrophy, implicating the impaired response to a positive energy balance in growth factor production within the tumor niche. In conjunction with these studies, we describe a potentially novel graft-competent model that can be used with patient-derived tissue to elucidate factors specific to extrinsic (host) and intrinsic (tumor) tissue that are critical for obesity-associated tumor promotion. Taken together, we demonstrate that obesity and excess energy establish a tumor environment with features of endocrine therapy resistance and identify a role for ligand-dependent FGFR1 signaling in obesity-associated breast cancer progression.


Subject(s)
Estrogens/metabolism , Obesity/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Estrogen/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Breast Neoplasms/etiology , Breast Neoplasms/genetics , Diet , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Loss of Function Mutation , Mice , Obesity/complications , Obesity/pathology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction , Tamoxifen/therapeutic use , Tumor Microenvironment , Weight Gain
9.
Breast Cancer Res ; 20(1): 50, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29898754

ABSTRACT

BACKGROUND: Obesity and type II diabetes are linked to increased breast cancer risk in postmenopausal women. Patients treated with the antidiabetic drug metformin for diabetes or metabolic syndrome have reduced breast cancer risk, a greater pathologic complete response to neoadjuvant therapy, and improved breast cancer survival. We hypothesized that metformin may be especially effective when targeted to the menopausal transition, as this is a lifecycle window when weight gain and metabolic syndrome increase, and is also when the risk for obesity-related breast cancer increases. METHODS: Here, we used an 1-methyl-1-nitrosourea (MNU)-induced mammary tumor rat model of estrogen receptor (ER)-positive postmenopausal breast cancer to evaluate the long-term effects of metformin administration on metabolic and tumor endpoints. In this model, ovariectomy (OVX) induces rapid weight gain, and an impaired whole-body response to excess calories contributes to increased tumor glucose uptake and increased tumor proliferation. Metformin treatment was initiated in tumor-bearing animals immediately prior to OVX and maintained for the duration of the study. RESULTS: Metformin decreased the size of existing mammary tumors and inhibited new tumor formation without changing body weight or adiposity. Decreased lipid accumulation in the livers of metformin-treated animals supports the ability of metformin to improve overall metabolic health. We also found a decrease in the number of aromatase-positive, CD68-positive macrophages within the tumor microenvironment, suggesting that metformin targets the immune microenvironment in addition to improving whole-body metabolism. CONCLUSIONS: These findings suggest that peri-menopause/menopause represents a unique window of time during which metformin may be highly effective in women with established, or at high risk for developing, breast cancer.


Subject(s)
Aromatase/genetics , Breast Neoplasms/drug therapy , Mammary Neoplasms, Animal/drug therapy , Metformin/administration & dosage , Animals , Breast/drug effects , Breast/immunology , Breast/pathology , Breast Neoplasms/chemically induced , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Neoplasms, Animal/chemically induced , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Methylnitrosourea/toxicity , Ovariectomy , Postmenopause/drug effects , Postmenopause/genetics , Postmenopause/immunology , Rats , Stromal Cells/drug effects , Stromal Cells/enzymology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
10.
Sci Rep ; 8(1): 6829, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717218

ABSTRACT

Although ErbB2-targeted therapeutics have significantly improved ErbB2+ breast cancer patient outcomes, therapeutic resistance remains a significant challenge. Therefore, the development of novel ErbB2-targeting strategies is necessary. Importantly, ErbB2 is a sensitive client protein of heat shock protein 90 (HSP90), which regulates client protein folding, maturation, and stabilization. HSP90 inhibition provides an alternative therapeutic strategy for ErbB2-targeted degradation. In particular, ganetespib, a novel HSP90 inhibitor, is a promising agent for ErbB2+ cancers. Nevertheless, the anti-cancer efficacy and clinical application of ganetespib for ErbB2+ breast cancer is largely unknown. In our study, we examined the anti-cancer effects of ganetespib on ErbB2+ BT474 and SKBR3 breast cancer cells, and isogenic paired cancer cell lines with lentivirus-mediated ErbB2 overexpression. Ganetespib potently inhibited cell proliferation, cell cycle progression, survival, and activation/phosphorylation of ErbB2 and key downstream effectors in ErbB2+ breast cancer cells. Moreover, ganetespib decreased the total protein levels of HSP90 client proteins and reduced ErbB2 protein half-life. ErbB2-overexpressing cancer cells were also more sensitive to ganetespib-mediated growth inhibition than parental cells. Ganetespib also strikingly potentiated the inhibitory effects of lapatinib in BT474 and SKBR3 cells. Ultimately, our results support the application of ganetespib-mediated HSP90 inhibition as a promising therapeutic strategy for ErbB2+ breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lapatinib/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/metabolism , Triazoles/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Half-Life , Humans , Lapatinib/therapeutic use , MCF-7 Cells , Mice , Mice, Transgenic , Signal Transduction/drug effects , Triazoles/therapeutic use
11.
Front Oncol ; 7: 252, 2017.
Article in English | MEDLINE | ID: mdl-29164052

ABSTRACT

Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8-12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.

12.
Oncotarget ; 8(35): 58847-58864, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28938602

ABSTRACT

Lapatinib, a small molecule ErbB2/EGFR inhibitor, is FDA-approved for the treatment of metastatic ErbB2-overexpressing breast cancer; however, lapatinib resistance is an emerging clinical challenge. Understanding the molecular mechanisms of lapatinib-mediated anti-cancer activities and identifying relevant resistance factors are of pivotal significance. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified oncoprotein that is overexpressed in breast cancer. Our study investigated the role of CIP2A in the anti-cancer efficacy of lapatinib in ErbB2-overexpressing breast cancer cells. We found that lapatinib concurrently downregulated CIP2A and receptor tyrosine kinase signaling in ErbB2-overexpressing SKBR3 and 78617 cells; however, these effects were attenuated in lapatinib-resistant (LR) cells. CIP2A overexpression rendered SKBR3 and 78617 cells resistant to lapatinib-induced apoptosis and growth inhibition. Conversely, CIP2A knockdown via lentiviral shRNA enhanced cell sensitivity to lapatinib-induced growth inhibition and apoptosis. Results also suggested that lapatinib downregulated CIP2A through regulation of protein stability. We further demonstrated that lapatinib-induced CIP2A downregulation can be recapitulated by LY294002, suggesting that Akt mediates CIP2A upregulation. Importantly, lapatinib induced differential CIP2A downregulation between parental BT474 and BT474/LR cell lines. Moreover, CIP2A shRNA knockdown significantly sensitized the BT474/LR cells to lapatinib. Collectively, our results demonstrate that CIP2A is a molecular target and resistance factor of lapatinib with a critical role in lapatinib-induced cellular responses, including the inhibition of the CIP2A-Akt feedback loop. Further investigation of lapatinib-mediated CIP2A regulation will advance our understanding of lapatinib-associated anti-tumor activities and drug resistance.

13.
Horm Cancer ; 8(5-6): 269-285, 2017 12.
Article in English | MEDLINE | ID: mdl-28741260

ABSTRACT

The androgen receptor (AR) has context-dependent roles in breast cancer growth and progression. Overall, high tumor AR levels predict a favorable patient outcome, but several studies have established a tumor promotional role for AR, particularly in supporting the growth of estrogen receptor positive (ER-positive) breast cancers after endocrine therapy. Our previous studies have demonstrated that obesity promotes mammary tumor progression after ovariectomy (OVX) in a rat model of postmenopausal breast cancer. Here, we investigated a potential role for AR in obesity-associated post-OVX mammary tumor progression following ovarian estrogen loss. In this model, we found that obese but not lean rats had nuclear localized AR in tumors that progressed 3 weeks after OVX, compared to those that regressed. AR nuclear localization is consistent with activation of AR-dependent transcription. Longer-term studies (8 weeks post-OVX) showed that AR nuclear localization and expression were maintained in tumors that had progressed, but AR expression was nearly lost in tumors that were regressing. The anti-androgen enzalutamide effectively blocked tumor progression in obese rats by promoting tumor necrosis and also prevented the formation of new tumors after OVX. Neither circulating nor mammary adipose tissue levels of the AR ligand testosterone were elevated in obese compared to lean rats; however, IL-6, which we previously reported to be higher in plasma from obese versus lean rats, sensitized breast cancer cells to low levels of testosterone. Our study demonstrates that, in the context of obesity, AR plays a role in driving ER-positive mammary tumor progression in an environment of low estrogen availability, and that circulating factors unique to the obese host, including IL-6, may influence how cancer cells respond to steroid hormones.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Obesity/etiology , Obesity/metabolism , Ovary/metabolism , Receptors, Androgen/metabolism , Adipose Tissue/metabolism , Animals , Antineoplastic Agents/pharmacology , Benzamides , Biomarkers , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatography, Liquid , Disease Models, Animal , Disease Progression , Female , Humans , Immunohistochemistry , Interleukin-6/metabolism , Interleukin-6/pharmacology , Mammary Neoplasms, Experimental , Mass Spectrometry , Nitriles , Obesity/blood , Ovariectomy , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Postmenopause , Rats , Steroids/blood , Steroids/metabolism , Testosterone/metabolism , Testosterone/pharmacology
14.
Cancer Prev Res (Phila) ; 10(3): 198-207, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28154203

ABSTRACT

Several epidemiologic studies have associated metformin treatment with a reduction in breast cancer incidence in prediabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiologic reports consistently link western-style high fat diets (HFD), which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of HFD-induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with 1-methyl-1-nitrosourea, and rats were randomized into metformin-treated (2 mg/mL drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (P < 0.05), reduced proliferative index (P < 0.01), and activated AMPK (P < 0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (P < 0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r = 0.57; P = 0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P = 0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5-fold in responsive tumors (P = 0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. Cancer Prev Res; 10(3); 198-207. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Mammary Neoplasms, Experimental/pathology , Metformin/pharmacology , Organic Cation Transport Proteins/metabolism , Animals , Cell Proliferation/drug effects , Female , Hypoglycemic Agents/pharmacology , Organic Cation Transporter 2 , Rats , Rats, Wistar
15.
Cell Cycle ; 15(8): 1046-59, 2016.
Article in English | MEDLINE | ID: mdl-26919310

ABSTRACT

Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-ß (TGF-ß) genes. We examined the biological, molecular and prognostic impact of TGF-ß upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-ß gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-ß elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-ß receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-ß-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-ß target genes was correlated to poor prognosis in claudin-low patients. Given TGF-ß's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-ß mediated oncogenesis.


Subject(s)
Carcinogenesis/drug effects , Claudins/metabolism , Mesenchymal Stem Cells/pathology , Metformin/pharmacology , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease-Free Survival , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Knock-In Techniques , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Neoplasm Invasiveness , Prognosis , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta , Triple Negative Breast Neoplasms/genetics , Up-Regulation/drug effects
16.
Oncotarget ; 7(13): 15757-71, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26909599

ABSTRACT

Triple-negative breast cancers (TNBC) are among the most aggressive and heterogeneous cancers with a high propensity to invade, metastasize and relapse. Here, we demonstrate that the anticancer compound, AMPI-109, is selectively efficacious in inhibiting proliferation and inducing apoptosis of multiple TNBC subtype cell lines as assessed by activation of pro-apoptotic caspases-3 and 7, PARP cleavage and nucleosomal DNA fragmentation. AMPI-109 had little to no effect on growth in the majority of non-TNBC cell lines examined. We therefore utilized AMPI-109 in a genome-wide shRNA screen in the TNBC cell line, BT-20, to investigate the utility of AMPI-109 as a tool in helping to identify molecular alterations unique to TNBC. Our screen identified the oncogenic phosphatase, PRL-3, as a potentially important driver of TNBC growth, migration and invasion. Through stable lentiviral knock downs and transfection with catalytically impaired PRL-3 in TNBC cells, loss of PRL-3 expression, or functionality, led to substantial growth inhibition. Moreover, AMPI-109 treatment, downregulation of PRL-3 expression or impairment of PRL-3 activity reduced TNBC cell migration and invasion. Histological evaluation of human breast cancers revealed PRL-3 was significantly, though not exclusively, associated with the TNBC subtype and correlated positively with regional and distant metastases, as well as 1 and 3 year relapse free survival. Collectively, our study is proof-of-concept that AMPI-109, a selectively active agent against TNBC cell lines, can be used as a molecular tool to uncover unique drivers of disease progression, such as PRL-3, which we show promotes oncogenic phenotypes in TNBC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Calcitriol/analogs & derivatives , Neoplasm Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Triple Negative Breast Neoplasms , Vitamin D/analogs & derivatives , Apoptosis/drug effects , Calcitriol/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Female , Humans , Oncogenes , Triple Negative Breast Neoplasms/genetics , Vitamin D/pharmacology
17.
Oncotarget ; 7(3): 2921-35, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26621843

ABSTRACT

Both erbB3 and IGF-1 receptor (IGF-1R) have been shown to play an important role in trastuzumab resistance. However, it remains unclear whether erbB3- and IGF-1R-initiated signaling pathways possess distinct effects on the sensitivity of lapatinib, a dual tyrosine kinase inhibitor against both EGFR and erbB2, in trastuzumab-resistant breast cancer. Here, we show that the trastuzumab-resistant SKBR3-pool2 and BT474-HR20 breast cancer sublines, as compared the parental SKBR3 and BT474 cells, respectively, exhibit refractoriness to lapatinib. Knockdown of erbB3 inhibited Akt in SKBR3-pool2 and BT474-HR20 cells, significantly increased lapatinib efficacy, and dramatically re-sensitized the cells to lapatinib-induced apoptosis. In contrast, specific knockdown of IGF-1R did not alter the cells' responsiveness to lapatinib. While the levels of phosphorylated Src (P-Src) were reduced upon IGF-1R downregulation, the P-Akt levels remained unchanged. Furthermore, a specific inhibitor of Akt, but not Src, significantly enhanced lapatinib-mediated anti-proliferative/anti-survival effects on SKBR3-pool2 and BT474-HR20 cells. These data indicate that erbB3 signaling is critical for both trastuzumab and lapatinib resistances mainly through the PI-3K/Akt pathway, whereas IGF-1R-initiated Src activation results in trastuzumab resistance without affecting lapatinib sensitivity. Our findings may facilitate the development of precision therapeutic regimens for erbB2-positive breast cancer patients who become resistant to erbB2-targeted therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Insulin-Like Growth Factor I/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-3/metabolism , Trastuzumab/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Lapatinib , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptor, ErbB-3/genetics , Receptor, IGF Type 1/biosynthesis , Receptor, IGF Type 1/genetics , Signal Transduction
18.
Br J Cancer ; 113(12): 1651-7, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26625004

ABSTRACT

BACKGROUND: Blockade of human epidermal growth factor receptor type 2 (HER2) has dramatically improved outcome for patients with HER2-positive breast cancer. Trastuzumab, an anti-HER2 monoclonal antibody, has previously demonstrated improvement in overall survival (OS) in patients with metastatic and early stage HER2-positive breast cancer. However, trastuzumab can cause congestive heart failure (CHF) with an increased frequency for patients who have also received an anthracycline. The current trial was designed to evaluate the impact of the duration of trastuzumab on CHF. METHODS: E2198 included 227 eligible women with histologically confirmed stage II or IIIA HER2-positive breast cancer. The patients were randomised to receive 12 weeks of paclitaxel and trastuzumab followed by four cycles of doxorubicin and cyclophosphamide (abbreviated Arm) or the aforementioned treatment with additional 1 year of trastuzumab (conventional Arm). The primary end point was to evaluate the safety of this variable duration of trastuzumab therapy, particularly cardiac toxicity defined as CHF or left ventricular ejection fraction decrease >10%. Secondary end points included disease-free survival (DFS) and OS. RESULTS: Compared with 12-week treatment with trastuzumab, 1 year of trastuzumab-based therapy did not increase the frequency or severity of cardiac toxicity: three patients on the abbreviated Arm and four on the conventional Arm experienced CHF. The 5-year DFS was 76% and 73% for the abbreviated and conventional Arms, respectively, with a hazard ratio (HR) of 1.3 (95% CI: 0.8-2.1; P=0.3). There was also no statistically significance difference in OS (HR, 1.4; P=0.3). CONCLUSIONS: Compared with 12 weeks of treatment, 1 year of treatment with trastuzumab did not significantly increase the risk of cardiac toxicity. Although not powered for efficacy comparisons, the longer duration of trastuzumab therapy did not demonstrate a signal for marked superiority.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Adult , Aged , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Paclitaxel/administration & dosage , Pilot Projects , Trastuzumab/administration & dosage
19.
Int J Clin Exp Pathol ; 8(6): 6143-56, 2015.
Article in English | MEDLINE | ID: mdl-26261492

ABSTRACT

The kinase deficient erbB3 receptor frequently co-expresses and interacts with erbB2 in human breast cancer to activate the oncogenic signaling pathways, and thus promote breast cancer cell survival/proliferation. In the current study, we discovered that the expression of endogenous mouse erbB3 was increased in the mammary tumors-derived from wild type (wt) rat erbB2/neu-transgenic mice, and the co-expression of erbB2 and erbB3 significantly promoted mammary tumor proliferation in vivo. Co-immunoprecipitation assays detected a heterodimeric complex consisting of the transgene encoded protein rat erbB2 and the endogenous mouse erbB3 in the mammary tumors. Specific knockdown of mouse erbB3 dramatically inhibited proliferation of the mammary tumor cell lines-derived from the transgenic mice. Elevated expression of erbB3 protein, but not mRNA, was abserved in human breast cancer cells upon ectopic expression of erbB2. Additional studies revealed that overexpression of erbB2 downregulated three erbB3-targeting miRNAs, miR-125a, miR-125b, and miR-205, whereas the erbB2 kinase inhibitor (lapatinib) significantly enhanced expression of the three miRNAs in breast cancer cells, suggesting that erbB2 might regulate erbB3 expression through a miRNA-dependent mechanism. Furthermore, an anti-erbB3 monoclonal IgG1 antibody (Ab) in combination with Herceptin mainly inactivated Akt and significantly inhibited proliferation of erbB2-overexpressing breast cancer cells. Collectively, our data indicate that increased expression of erbB3 plays a pivotal role in activating downstream PI-3K/Akt pathway and promoting erbB2-driven mammary/breast tumorigenesis. Simultaneous targeting of erbB2 and erbB3 with two IgG1 Abs may be an effective strategy to treat breast cancer patients whose tumors overexpress both erbB2 and erbB3.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Trastuzumab/pharmacology , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Lapatinib , MCF-7 Cells , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Burden/drug effects
20.
Horm Cancer ; 5(6): 374-89, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25213330

ABSTRACT

The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , Metformin/therapeutic use , MicroRNAs/metabolism , Neoplastic Stem Cells/drug effects , Triple Negative Breast Neoplasms/drug therapy , 3' Untranslated Regions/genetics , Apoptosis/drug effects , Cell Line, Tumor , Fatty Acid Synthase, Type I/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Glands, Human/drug effects , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...