Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 23(7): 1706-1723, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37489282

ABSTRACT

Genome sequencing enables answering fundamental questions about the genetic basis of adaptation, population structure and epigenetic mechanisms. Yet, we usually need a suitable reference genome for mapping population-level resequencing data. In some model systems, multiple reference genomes are available, giving the challenging task of determining which reference genome best suits the data. Here, we compared the use of two different reference genomes for the three-spined stickleback (Gasterosteus aculeatus), one novel genome derived from a European gynogenetic individual and the published reference genome of a North American individual. Specifically, we investigated the impact of using a local reference versus one generated from a distinct lineage on several common population genomics analyses. Through mapping genome resequencing data of 60 sticklebacks from across Europe and North America, we demonstrate that genetic distance among samples and the reference genomes impacts downstream analyses. Using a local reference genome increased mapping efficiency and genotyping accuracy, effectively retaining more and better data. Despite comparable distributions of the metrics generated across the genome using SNP data (i.e. π, Tajima's D and FST ), window-based statistics using different references resulted in different outlier genes and enriched gene functions. A marker-based analysis of DNA methylation distributions had a comparably high overlap in outlier genes and functions, yet with distinct differences depending on the reference genome. Overall, our results highlight how using a local reference genome decreases reference bias to increase confidence in downstream analyses of the data. Such results have significant implications in all reference-genome-based population genomic analyses.


Subject(s)
Metagenomics , Smegmamorpha , Animals , Genome/genetics , Chromosome Mapping , Genomics/methods , Sequence Analysis, DNA/methods , Smegmamorpha/genetics
2.
Parasitology ; 149(9): 1164-1172, 2022 08.
Article in English | MEDLINE | ID: mdl-35570701

ABSTRACT

How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.


Subject(s)
Fish Diseases , Parasitic Diseases , Smegmamorpha , Trematoda , Animals , Fish Diseases/parasitology , Fishes , Host-Parasite Interactions , Smegmamorpha/parasitology
3.
Biol Lett ; 14(8)2018 08.
Article in English | MEDLINE | ID: mdl-30135117

ABSTRACT

All Lepidoptera produce two sperm types: normal, nucleated 'eupyrene' sperm and anucleate 'apyrene' sperm. One hypothesis for the evolution of apyrene sperm suggests that they act to reduce female remating rate. Apyrene sperm require less resources to produce than do eupyrene sperm, and could delay remating by females by acting as a 'cheap filler', packing the spermatheca and thereby reducing receptivity. This would reduce the risk of sperm competition, giving a potential adaptive advantage to the male producing these sperm. This leads to the prediction that the probability of a female remating should correlate with the number of stored apyrene sperm, which has previously been supported by experiments using the green-veined white butterfly, Pieris napi We repeated this experiment using the Indian meal moth, Plodia interpunctella We find that in this species, eupyrene, not apyrene sperm number is the best predictor of female remating probability, indicating that the 'cheap filler' hypothesis for the function of apyrene sperm is not well supported in Pl. interpunctella.


Subject(s)
Moths/physiology , Sexual Behavior, Animal/physiology , Spermatozoa/cytology , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL