Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Nat Commun ; 15(1): 5346, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914561

ABSTRACT

Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.


Subject(s)
Nitrogen , Phosphorus , Phylogeny , Plant Leaves , Phosphorus/metabolism , Plant Leaves/metabolism , Nitrogen/metabolism , Ecosystem , Plants/metabolism , Plants/classification , Environment , Species Specificity
2.
J Am Soc Mass Spectrom ; 35(7): 1497-1506, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38828990

ABSTRACT

Ion trajectory simulation is a significant and useful tool for understanding ion transfer mechanisms within the first vacuum region of the atmospheric pressure ionization mass spectrometer (API-MS). However, the complex dynamic gas field and wide pressure range lead to inaccurate simulation and huge computational costs. In this work, a novel electrohydrodynamic simulation called the statistical diffusion-hard-sphere (SDHS) mixed collision model was developed for characterizing the ion trajectories. For the first time, the influence of the dynamic pressure on the ion trajectory is considered for simulation, which helps to avoid an intolerable computational cost. Comparing with the conventional Monte Carlo collision model, the SDHS method helps to improve the calculation accuracy of ion trajectories under the first vacuum region and reduce the computational cost for at least 12-folds. Simulation results showed that the maximum ion loss came from the gap of the electrodes. The distance of the capillary-quadrupole ion guide was also a non-negligible factor. The trend of quantitative experimental results matches the SDHS simulation results. The maximum ion transfer efficiencies of quantitative experiment and simulation were 55% and 52%, respectively. Moreover, three ions, caffeine, reserpine, and Ultramark 1621, were measured for evaluating the applicability of SDHS in real API-MS. The trend of experimental results showed good agreement with that of computation. And the results of caffeine further illustrated the reason that the small mass ion transfer efficiency decreased with increasing radio frequency voltage. SDHS method is expected to be useful in the design of ion guides for further improvement of the sensitivity of API-MS.

3.
Hortic Res ; 11(6): uhae110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898960

ABSTRACT

Flowers and fruits are the reproductive organs in plants and play essential roles in natural beauty and the human diet. CLAVATA (CLV) signaling has been well characterized as regulating floral organ development by modulating shoot apical meristem (SAM) size; however, the signaling molecules downstream of the CLV pathway remain largely unknown in crops. Here, we found that functional disruption of CsCLV3 peptide and its receptor CsCLV1 both resulted in flowers with extra organs and stumpy fruits in cucumber. A heterotrimeric G protein α-subunit (CsGPA1) was shown to interact with CsCLV1. Csgpa1 mutant plants derived from gene editing displayed significantly increased floral organ numbers and shorter and wider fruits, a phenotype resembling that of Csclv mutants in cucumber. Moreover, the SAM size was enlarged and the longitudinal cell size of fruit was decreased in Csgpa1 mutants. The expression of the classical stem cell regulator WUSCHEL (WUS) was elevated in the SAM, while the expression of the fruit length stimulator CRABS CLAW (CRC) was reduced in the fruit of Csgpa1 mutants. Therefore, the Gα-subunit CsGPA1 protein interacts with CsCLV1 to inhibit floral organ numbers but promote fruit elongation, via repressing CsWUS expression and activating CsCRC transcription in cucumber. Our findings identified a new player in the CLV signaling pathway during flower and fruit development in dicots, increasing the number of target genes for precise manipulation of fruit shape during crop breeding.

4.
J Med Virol ; 96(6): e29753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895800

ABSTRACT

Human papillomavirus (HPV) type 81 has recently become one of the most common low-risk HPV types; however, literature focusing on it is limited. This study aimed to analyze the reasons for the increased detection rate of HPV81 and investigate its evolving pathogenicity. We analyzed the detection rates and trends of HPV81 in 229 061 exfoliated cervical cell samples collected from 2014 to 2023; collected samples of HPV81 single infections from two different time periods; and analyzed the allele frequencies, positive selection, viral load, persistent infection capacity, and pathogenicity of E6 and E7 genotypes. We found that the detection rate of HPV81 ranked first among the low-risk types in exfoliated cervical cells and exhibited a significantly increasing trend (p < 0.001). The frequency of the E6 prototype allele of HPV81 (n = 317) was significantly increased (p = 0.018) and demonstrated the strongest adaptive capacity. The viral load and persistent infection capacity of the E6 prototype were significantly higher than those of the mutants, thus serving as key drivers for increasing the detection rate of HPV81 and enhancing its pathogenicity. The viral load was positively correlated with persistent infection capacity and pathogenicity. Persistent infection was a crucial factor in the pathogenicity of HPV81. Successful adaptive evolution of HPV81 is accompanied by enhanced pathogenicity.


Subject(s)
Genotype , Papillomavirus Infections , Persistent Infection , Polymorphism, Genetic , Viral Load , Humans , Papillomavirus Infections/virology , Female , Persistent Infection/virology , Cervix Uteri/virology , Cervix Uteri/pathology , Adult , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Gene Frequency , Oncogene Proteins, Viral/genetics , Virulence/genetics , Alphapapillomavirus/genetics , Alphapapillomavirus/pathogenicity , Alphapapillomavirus/classification , Alphapapillomavirus/isolation & purification , Human Papillomavirus Viruses
5.
Nat Commun ; 15(1): 5151, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886382

ABSTRACT

RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.


Subject(s)
Centromere , DNA Topoisomerases, Type I , DNA, Satellite , RNA Polymerase II , Transcription, Genetic , Animals , DNA, Satellite/genetics , DNA, Satellite/metabolism , Humans , Centromere/metabolism , Mice , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , DNA Breaks, Double-Stranded , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular
6.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746280

ABSTRACT

Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.

7.
J Magn Reson Imaging ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708838

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE: To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE: Retrospective. POPULATION: 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT: Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS: Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS: Compared with healthy controls, peak systolic (24.76 ± 5.40 µJ/mL vs. 31.86 ± 13.18 µJ/mL), systolic (11.62 ± 2.29 µJ/mL vs. 15.27 ± 5.10 µJ/mL), diastolic (7.95 ± 1.92 µJ/mL vs. 13.33 ± 5.15 µJ/mL), peak A-wave (15.95 ± 4.86 µJ/mL vs. 31.98 ± 14.51 µJ/mL), and global KEiEDV (9.40 ± 1.64 µJ/mL vs. 14.02 ± 4.14 µJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 µJ/mL vs. 12.28 ± 4.85 µJ/mL vs. 14.80 ± 5.06 µJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 µJ/mL vs. 14.69 ± 8.20 µJ/mL vs. 19.33 ± 8.29 µJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (ß* = 0.505; ß* = 0.328), and proportion of direct flow (ß* = -0.376; ß* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION: 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. TECHNICAL EFFICACY: Stage 3.

8.
Int J Biol Macromol ; 266(Pt 2): 131277, 2024 May.
Article in English | MEDLINE | ID: mdl-38565366

ABSTRACT

Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging. Hence, there is a motivation to develop new synthetic dressings to improve bacteria-infected wound healing. Here, we fabricate a biocompatible sponge through the covalent crosslinking of collagen (Col), quaternized chitosan (QCS), and graphene oxide (GO). The resulting Col-QCS-GO sponge shows an elastic modulus of 1.93-fold higher than Col sponge due to enhanced crosslinking degree by GO incorporation. Moreover, the fabricated Col-QCS-GO sponge shows favorable porosity (84.30 ± 3.12 %), water absorption / retention (2658.0 ± 113.4 % / 1114.0 ± 65.7 %), and hemostasis capacities (blood loss <50.0 mg). Furthermore, the antibacterial property of the Col-QCS-GO sponge under near-infrared (NIR) irradiation is significantly enhanced (the inhibition rates are 99.9 % for S. aureus and 99.9 % for E. coli) due to the inherent antibacterial properties of QCS and the photothermal antibacterial capabilities of GO. Finally, the Col-QCS-GO+NIR sponge exhibits the lowest percentage of wound area (9.05 ± 1.42 %) at day 14 compared to the control group (31.61 ± 1.76 %). This study provides new insights for developing innovative sponges for bacteria-infected wound healing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Graphite , Hemostatics , Wound Healing , Animals , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Collagen/chemistry , Collagen/pharmacology , Escherichia coli/drug effects , Graphite/chemistry , Graphite/pharmacology , Hemostasis/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Porosity , Staphylococcus aureus/drug effects , Wound Healing/drug effects
9.
J Clin Immunol ; 44(3): 80, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462559

ABSTRACT

OBJECTIVE: We sought to explore the prevalence of type I interferon-neutralizing antibodies in a Chinese cohort and its clinical implications during the Omicron variant wave of SARS-CoV-2. METHODS: Type I interferon (IFN) autoantibodies possessing neutralizing capabilities were identified using luciferase assays. The capacity of the autoantibodies for in vitro interference with antiviral activity of IFN was assessed by using a SARS-CoV-2 replicon system. An analysis of the demographic and clinical profiles of patients exhibiting neutralizing antibodies was also conducted. RESULTS: In this cohort, 11.8% of severe/critical cases exhibited the existence of type I IFN-neutralizing antibodies, specifically targeting IFN-α2, IFN-ω, or both, with an elderly male patient tendency. Notably, these antibodies exerted a pronounced inhibitory effect on the antiviral activity of IFN against SARS-CoV-2 under controlled in vitro conditions. Furthermore, a noteworthy correlation was discerned between the presence of these neutralizing antibodies and critical clinical parameters, including C-reactive protein (CRP) levels, D-dimer levels, and lymphocyte counts. CONCLUSION: The presence of type I IFN-neutralizing antibodies is a pervasive risk factor for severe/critical COVID-19 in the Chinese population.


Subject(s)
COVID-19 , Interferon Type I , Aged , Humans , Male , Autoantibodies , COVID-19/epidemiology , SARS-CoV-2 , Prevalence , China/epidemiology , Antibodies, Neutralizing , Antiviral Agents
10.
Adv Mater ; : e2313297, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475975

ABSTRACT

The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces.

11.
Front Psychiatry ; 15: 1343132, 2024.
Article in English | MEDLINE | ID: mdl-38487581

ABSTRACT

Background: Previous studies have shown that lifestyle was associated with depression. Thus, the aim of this study was to examine the causality between multiple lifestyles and depression by Mendelian randomization (MR) analysis. Methods: The single-nucleotide polymorphisms (SNPs) of depression, alcoholic drinks per week, sleeplessness or insomnia, body mass index (BMI), mood swings, weekly usage of mobile phone in the last 3 months, beef intake, cooked vegetable intake, and "smoking status: never" were acquired from the Integrative Epidemiology Unit Open genome-wide association study database. Causal effects of eight exposure factors and depression were investigated using MR-Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode, and results were primarily referred to IVW. Subsequently, univariable MR (UVMR) analysis was performed on eight exposure factors and depression, separately. In addition, sensitivity analysis, including heterogeneity test, horizontal pleiotropy, and leave-one-out (LOO) methods, was conducted to evaluate the stability of MR results. Furthermore, multivariable MR (MVMR) analysis was carried out. Results: UVMR analysis revealed that all eight exposure factors were causally associated with depression; alcoholic drinks per week, sleeplessness or insomnia, BMI, mood swings, weekly usage of mobile phone in the last 3 months, and cooked vegetable intake were risk factors, and beef intake and "smoking status: never" were protection factors. Heterogeneity tests revealed no heterogeneity for alcoholic drinks per week, sleeplessness or insomnia, mood swings, weekly usage of mobile phone in the last 3 months, and cooked vegetable intake. Meanwhile, there was no horizontal pleiotropy in UVMR, and LOO analysis verified that univariable analysis results were reliable. Moreover, MVMR analysis indicated that mood swings and weekly usage of mobile phone in the last 3 months were risk factors, and beef intake was a protection factor for depression when multiple factors occurred at the same time. Conclusion: Alcoholic drinks per week, sleeplessness or insomnia, BMI, mood swings, weekly usage of mobile phone in the last 3 months, and cooked vegetable intake were risk factors, and beef intake and "smoking status: never" were protection factors. In addition, mood swings, weekly usage of mobile phone in the last 3 months, and beef intake had a direct effect on depression when multiple factors occurred simultaneously.

12.
Int J Parasitol Parasites Wildl ; 23: 100912, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375444

ABSTRACT

Soft ticks (Ixodida: Argasidae) are ectoparasites of terrestrial vertebrates with worldwide distributions. As one representative group of Argasidae, the genus Argas has an important vectorial role in transmitting zoonotic diseases. However, our knowledge of the subgenus Argas in China is still limited, as most literature only lists occurrence records or describes specific case reports without providing detailed morphological characteristics and further molecular data. This study aims to characterize Argas vulgaris through complete mitochondrial sequencing and morphological diagnostic techniques based on a batch of adult specimens collected from Ningxia Hui Autonomous Regions (NXHAR), North China. The morphology and microstructures of Ar. vulgaris and other lectotypes of argasid ticks in the subgenus Argas were also observed using a stereomicroscope. Following DNA extraction and sequencing, a complete mitochondrial sequence of Ar. vulgaris was assembled and analyzed within a phylogenetic context. The 14,479 bp mitogenome of Ar. vulgaris consists of 37 genes, including 13 genes for protein coding, two for ribosomal RNA, 22 for transfer RNA, and one for control region (D-loops). Phylogenetic analysis of Ar. vulgaris showed 98.27%-100% nucleotide identity with Ar. japonicus, indicating a close relationship between the two tick species. The morphological diagnostic features to differentiate Ar. vulgaris from other ticks within the subgenus Argas included the location of the anus and setae on the anterior lip of the female genital aperture. This study provided high-resolution scanning electron microscope images of female Ar. vulgaris and corresponding molecular data, representing valuable resources for future accurate species identification.

13.
Int J Biol Macromol ; 263(Pt 2): 130386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395288

ABSTRACT

The management of diabetic wounds poses a substantial economic and medical burden for diabetic patients. Oxidative stress and persistent bacterial infections are considered to be the primary factors. Qiai essential oil (QEO) exhibits various pharmacological characteristics, including inflammatory-reducing, antibacterial, and antioxidant properties. Nevertheless, the hydrophobic nature and propensity for explosive release of this substance present constraints on its potential for future applications. Here, we developed a stimulus-responsive hydrogel to overcome the multiple limitations of QEO-based wound dressings. The QEO was encapsulated within graphene oxide (GO) through repeated extrusion using an extruder. Subsequently, QEO@GO nanoparticles were incorporated into a Gelatin-methacryloyl (GelMA) hydrogel. The QEO@GO-GelMA hydrogel demonstrated controlled release ablation, photothermal antibacterial effects, and contact ablation against two representative bacterial strains. It effectively reduced reactive oxygen species (ROS) generation, promoted angiogenesis, and decreased levels of the pro-inflammatory cytokine interleukin-6 (IL-6), thereby accelerating the healing process of diabetic wounds. In addition, in vitro and in vivo tests provided further evidence of the favorable biocompatibility of this multifunctional hydrogel dressing. Overall, the QEO@GO-GelMA hydrogel provides numerous benefits, encompassing antimicrobial properties, ROS-scavenging abilities, anti-inflammatory effects, and the capacity to expedite diabetic wound healing. These attributes make it an optimal choice for diabetic wound management.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus , Methacrylates , Humans , Reactive Oxygen Species , Gelatin , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents
14.
Huan Jing Ke Xue ; 45(1): 173-180, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216469

ABSTRACT

Phosphorus (P) conveyed by surface runoff plays an essential role in regulating nutrient balance and primary production in estuarine waters. In this study, basic physiochemical properties, total phosphorus (TP, including speciation), particulate iron (PFe), particulate manganese (PMn), and particulate aluminum (PAl) of the surface water in the Pearl River Estuary (PRE) in different seasons were determined to investigate the spatiotemporal distribution characteristics of P and to identify the crucial factor controlling P migration and transformation in the freshwater-saltwater interaction zone. TP concentrations (28.88-233.68 µg·L-1) decreased with increasing salinity gradient owing to deposition and dilution. The proportions of P speciation followed a decreasing order as dissolved inorganic phosphorus (DIP, 37.3%) > particulate inorganic phosphorus (PIP, 22.7%) > dissolved organic phosphorus (DOP, 21.0%) > particulate organic phosphorus (POP, 19.0%). PIP was positively related to PFe, PMn, and PAl (P < 0.05), confirming their concurrent migration behaviors. In addition, the increase in salinity promoted the desorption of phosphate on the suspended particulate matters, which mainly took place near the freshwater-saltwater interface. A significant positive correlation (P < 0.001) between the solid-liquid phase partitioning coefficient (Kd) of phosphate and salinity indicated that PIP was present mainly in more stable forms in the brackish water. Most importantly, a better relationship between Kd and PMn (P < 0.01) supported our scientific hypothesis of the "load-unload" effect of Mn oxides on P:particulate-carrying phosphates transported from the freshwater zone tend to be desorbed and released into the brackish water.

15.
Appl Microbiol Biotechnol ; 108(1): 16, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170318

ABSTRACT

Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.


Subject(s)
Penicillium , Polysaccharides/metabolism
16.
Bioengineering (Basel) ; 11(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38247958

ABSTRACT

Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.

17.
Food Chem ; 440: 138249, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38183708

ABSTRACT

The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV). The VCs 1,2-dimethoxybenzene, 1,2,3-trimethoxybenzene, (E)-linalool oxide (pyranoid), methyl salicylate, linalool, ß-ionone, ß-damascenone were the key characteristic VCs of RIPT fermented by M. purpureus. OAV and Gas chromatography-olfactometry (GC-O) further indicated that ß-damascenone was the highest contribution VCs to the characteristic flavor of RIPT fermented by M. purpureus. This study reveals the specificities and contributions of VCs present in RIPT under different fermentation methods, thus providing new insights into the influence of microorganisms on RIPT flavor.


Subject(s)
Monascus , Norisoprenoids , Volatile Organic Compounds , Tea/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Volatile Organic Compounds/analysis
18.
New Phytol ; 241(3): 1088-1099, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991013

ABSTRACT

Stoichiometric rules may explain the allometric scaling among biological traits and body size, a fundamental law of nature. However, testing the scaling of elemental stoichiometry and growth to size over the course of plant ontogeny is challenging. Here, we used a fast-growing bamboo species to examine how the concentrations and contents of carbon (C), nitrogen (N) and phosphorus (P), relative growth rate (G), and nutrient productivity scale with whole-plant mass (M) at the culm elongation and maturation stages. The whole-plant C content vs M and N content vs P content scaled isometrically, and the N or P content vs M scaled as a general 3/4 power function across both growth stages. The scaling exponents of G vs M and N (and P) productivity in newly grown mass vs M relationships across the whole growth stages decreased as a -1 power function. These findings reveal the previously undocumented generality of stoichiometric allometries over the course of plant ontogeny and provide new insights for understanding the origin of ubiquitous quarter-power scaling laws in the biosphere.


Subject(s)
Phosphorus , Plants , Plant Development , Body Size , Nitrogen
19.
Environ Pollut ; 342: 123104, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38070645

ABSTRACT

Reservoirs play important roles in the drinking water supply for urban residents, agricultural water provision, and the maintenance of ecosystem health. Satellite optical remote sensing of water quality variables in medium and micro-sized inland waters under oligotrophic and mesotrophic status is challenging in terms of the spatio-temporal resolution, weather conditions and frequent nutrient status changes in reservoirs, etc., especially when quantifying non-optically active components (non-OACs). This study was based on the surface reflectance products of unmanned aerial vehicle (UAV) multispectral images, Sentinel-2B Multispectral instrument (MSI) images and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) by utilizing fuzzy C-means (FCM) clustering algorithm was combined with band combination (BC) model to construct the FCM-BC empirical model, and used mixed density network (MDN), extreme gradient boosting (XGBoost), deep neural network (DNN) and support vector regression (SVR) machine learning (ML) models to invert 12 kinds of optically active components (OACs) and non-OACs. Compared with the unclustered BC (UC) model, the mean coefficient of determination (MR) of the FCM-BC models was improved by at least 46.9%. MDN model showed best accuracy (R2 in the range of 0.60-0.98) and stability (R2 decreased by up to 13.2%). The accuracy of UAV was relatively higher in both empirical methods and machine learning methods. Additionally, the spatio-temporal distribution maps of four water quality variables were mapped based on the MDN model and UAV images, all platforms showed good consistency. An inversion strategy of water quality variables in various monitoring frequencies and weather conditions were proposed finally. The purpose of introducing the UAV platform was to cooperate with the satellite to improve the monitoring response ability of OACs and non-OACs in small and micro-sized oligotrophic and mesotrophic water bodies.


Subject(s)
Remote Sensing Technology , Water Quality , Ecosystem , Water Supply , China
20.
Magn Reson Imaging ; 107: 8-14, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38159873

ABSTRACT

PURPOSE: To evaluate the diagnostic performance of 3.0 T unenhanced compressed-sensing sensitivity encoding (CS-SENSE) Dixon water-fat separation coronary MR angiography (CMRA) in patients with low-to-intermediate risk of coronary artery disease (CAD) and its ability to grade the severity of CAD based on Coronary Artery Disease Reporting and Data System (CAD-RADS). METHODS: A total of 55 patients who was clinically evaluated as low-to-intermediate risk of CAD were finally included to undergo both 3.0 T CS-SENSE water-fat separation CMRA and coronary computed tomography angiography (CCTA), and 11 of them also underwent X-ray coronary angiography (CAG). The severity of coronary artery disease was graded in patients who had completed both CCTA and CMRA examinations by the use of CAD-RADS reports for the patients with stable chest pain, and the diagnostic consistency between the two approaches was evaluated. Diagnostic performance of CMRA was assessed using the combination of CCTA and CAG as the reference standard for excluding or confirming CAD respectively. RESULTS: The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy of 3.0 T unenhanced water-fat separation coronary MRA were 90.0%, 95.0%, 81.8%, 97.4% and 94.0% for a patient-based analysis respectively. In comparison with CCTA, 3.0 T Dixon water-fat separation CMRA demonstrated excellent consistency in grading the severity of coronary heart disease according to CAD-RADS (0.77 for kappa value). CONCLUSION: In the group of low-to-intermediate probability for CAD, 3.0 T unenhanced CS-SENSE Dixon water-fat separation CMRA can present satisfactory diagnostic performance for the exclusion of CAD with high sensitivity and negative predictive value as well as the evaluation of grading the severity of coronary artery disease.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Water , Heart , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...