Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Thorac Cancer ; 10(6): 1388-1394, 2019 06.
Article En | MEDLINE | ID: mdl-31017733

BACKGROUND: This study was conducted to investigate the effect of P14 promoter aberrant methylation on the biological function of human lung adenocarcinoma cells. METHODS: We used nested methylation-specific PCR (NMSP) to detect the methylation status of the p14ARF promoter region in SPCA1 and BEAS2B cell lines. The experimental groups were treated with 5-aza-2'-deoxycytidine (5-Aza). Quantitative real-time PCR, Western blot, flow cytometry, and Cell Counting Kit 8 were used to detect the expression of p14ARF messenger RNA and protein in each group, apoptosis, and cell proliferation inhibition, respectively. RESULTS: NMSP detected that the p14 promoter region of SPCA1 cells has abnormal methylation status. After treatment with 5-Aza, the expression of p14ARF messenger RNA and protein in SPCA1 cells (P < 0.05) and the inhibition rate of cell proliferation (P < 0.05) were significantly increased, while the apoptosis rate was markedly increased (P < 0.05). However, no differences were observed in BEAS2B cells (P > 0.05). CONCLUSION: Abnormal methylation of the p14ARF promoter region plays an important role in the development of lung cancer cells. Our results suggest the use of P14 promoter aberrant methylation as a therapeutic target for drug research or to improve the sensitivity of other drugs.


Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation , Decitabine/pharmacology , Lung Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA Methylation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Promoter Regions, Genetic , Up-Regulation
2.
Int J Clin Exp Med ; 8(6): 9560-4, 2015.
Article En | MEDLINE | ID: mdl-26309624

BACKGROUND: Previous study has detected the expression of miR-625 in esophageal squamous cell carcinoma (ESCC) and found that miR-625 was related to tumor depth, stage, and metastasis of ESCC. However, the prognostic value of miR-625 in ESCC has not yet been reported. METHODS: Real-time quantitative PCR was employed to measure the expression level of miR-625 in clinical ESCC tissues. Survival curves were made using the Kaplan-Meier method, and the log rank test was used to analyze the differences between clinicopathological characteristics and survival in ESCC patients. RESULTS: The expression level of miR-625 in ESCC tissues was significantly lower than that in adjacent non-tumor tissues (1.00 ± 0.38 vs. 3.25 ± 1.83, P < 0.0001). Low miR-625 expression was observed to be closely correlated with lymph node metastasis (P = 0.01), distant metastasis (P = 0.007), tumor differentiation (P = 0.04), and advanced TNM stage (P = 0.005). The 5-year overall survival rate in the low expression group was 38.1%, compared with 68.8% in the high expression group (log-rank test, P = 0.001). Multivariate Cox regression analysis showed that miR-625 expression level (HR = 3.72, 95% CI: 1.36-8.78, P = 0.005) was an independent factor in predicting the overall survival of ESCC patients. CONCLUSION: Our findings provide the convincing evidence for the first time that the down-regulation of miR-625 may serve as a novel molecular marker to predict the aggressive tumor progression and unfavorable prognosis of ESCC patients.

...