Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Nat Commun ; 15(1): 7644, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223191

ABSTRACT

WNT signaling is fundamental in development and homeostasis, but how the Frizzled receptors (FZDs) propagate signaling remains enigmatic. Here, we present the cryo-EM structure of FZD4 engaged with the DEP domain of Dishevelled 2 (DVL2), a key WNT transducer. We uncover a distinct binding mode where the DEP finger-loop inserts into the FZD4 cavity to form a hydrophobic interface. FZD4 intracellular loop 2 (ICL2) additionally anchors the complex through polar contacts. Mutagenesis validates the structural observations. The DEP interface is highly conserved in FZDs, indicating a universal mechanism by which FZDs engage with DVLs. We further reveal that DEP mimics G-protein/ß-arrestin/GRK to recognize an active conformation of receptor, expanding current GPCR engagement models. Finally, we identify a distinct FZD4 dimerization interface. Our findings delineate the molecular determinants governing FZD/DVL assembly and propagation of WNT signaling, providing long-sought answers underlying WNT signal transduction.


Subject(s)
Dishevelled Proteins , Frizzled Receptors , Wnt Signaling Pathway , Frizzled Receptors/metabolism , Frizzled Receptors/chemistry , Frizzled Receptors/genetics , Dishevelled Proteins/metabolism , Dishevelled Proteins/genetics , Dishevelled Proteins/chemistry , Humans , HEK293 Cells , Protein Binding , Cryoelectron Microscopy , Models, Molecular , Protein Domains
2.
Materials (Basel) ; 17(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124393

ABSTRACT

Laser bending forming, as a flexible and die-less forming approach, facilitates the three-dimensional shaping of sheets through the generation of thermal stress via laser-material interaction. In this study, the bending forming characteristics of CoCrFeMnNi high-entropy alloy sheets induced by nanosecond pulse laser irradiation were systematically investigated. The effects of parameters including laser power, scanning speed, number of scans, scanning interval, and sheet size on the bending angle, cross-sectional morphology, and hardness were studied in detail under both the laser single-line and multi-line scanning modes. The experimental results confirmed the effectiveness of nanosecond pulse laser irradiation for achieving accurate formation of CoCrFeMnNi sheets, with the successful fabrication of J, L, and U-shaped metal components. Apart from the forming ability, the cross-sectional hardness was significantly increased due to the grain refinement effect of nanosecond pulse laser irradiation. Furthermore, employing the laser single-line scanning mode enabled the effective rectification of overbending parts, showcasing complete recovery for small-angle overbending, and a remarkable 91% recovery for larger-angle overbending. This study provides an important basis for the bendability of CoCrFeMnNi sheets by laser forming and elucidates the evolution of the microstructure and mechanical properties in the bending region.

3.
Antioxidants (Basel) ; 13(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39199159

ABSTRACT

Our preliminary study identified dairy cow placenta extract (CPE) as a mixture of peptides with potent antioxidant activity both in vivo and in vitro. However, the specific antioxidant peptides (AOPs) responsible for this activity were not yet identified. In the current study, we employed virtual screening and chromatography techniques to isolate two peptides, ANNGKQWAEVF (CP1) and QPGLPGPAG (CP2), from CPE. These peptides were found to be less stable under extreme conditions such as high temperature, strong acid, strong alkali, and simulated digestive conditions. Nevertheless, under normal physiological conditions, both CP1 and CP2 exhibited significant antioxidant properties, including free-radical scavenging, metal chelating, and the inhibition of lipid peroxidation. They also up-regulated the activities of intracellular antioxidant enzymes in response to hydrogen-peroxide-induced oxidative stress, resulting in reduced MDA levels, a decreased expression of the Keap1 gene and protein, and increased levels of the Nrf2 and HO-1 genes and proteins. Furthermore, CP1 demonstrated superior antioxidant activity compared to CP2. These findings suggest that CP1 and CP2 hold potential for mitigating oxidative stress in vitro and highlight the efficacy of virtual screening as a method for isolating AOPs within CPE.

4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3095-3112, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041169

ABSTRACT

According to the theory of five movements and six climates, the innate constitution plays a crucial role in determining the underlyingpa thological mechanisms of diseases later in life. Previous studies have demonstrated a close association between the constitution, as defined by the theory of five movements and six climates, and the development of various types of tumors. Furt hermore,the tumorsubtype determined by the constitution has prognostic implications. This highlights the potential of utilizing the fivemovements and six climates theory to guide the implementation of precision medicine strategies in thefield of oncology. However, no resear ch has yet been conducted to investigate the use of this theory in guiding the development of tumor molecular classification and precisi onmedicine strategies. The objective of this research is to uncover the biological characteristics of each constitution within a pancanc ercohort and identify potential anti-tumor drugs that are applicable to patients with different constitutional types. By doing so, we aimto c ontribute to the establishment of a precision medicine strategy for tumors derived from the original concepts of traditional Chi nesemedicine(TCM). In this study, we obtainedpan-cancer Bulk RNA-Seq data from UCSC Xena, GWAS cohort data from the UKBiobank, and cis-eQTLs data from eQ TLGen and GTEx V8. We employed machine learning methods to screen for hub genes associated with each constitution. Subsequently, we utilized informatics tools to explore the biological characteristics of each constitut iondefined by the theory of five movements and six bioclimates. Further, potential anti-tumor drugs suitable for patients with differen tconstitutional types were identified through mendelian randomization, molecular docking, and drug-like prediction techniques. Withinthe pan-cancer cohort, significant differences were observed among different constitutions in terms of progression-free interval, biological f unctions, immune cell abundance, tumor drug sensitivity, and immunotherapy response. These findings suggest that the five movements and six climates theory can guide tumor molecular classification and the development of precision medicine strategies. Moreover,the biological characteristics inherent to each constitution partially shed light on the scientific implications of Chinese medicinetheories, offering a fresh perspective towards clinical cancer treatment. Through molecular docking and drug-like prediction, several po tential anti-tumor drugs such as 17-beta-estradiol, serotonin, trans-resveratrol, and linoleic acid were identified. Overall, the util izationof multi-omics approaches pro vides a powerful tool to unravel the scientific foundations of TCM theories. The elucidation of themu lti-omics features associated witheach constitution in tumors serves as the basis for applying the five movements and six climates theoryto tumor molecular classification and the development of precision medicine strategies.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Precision Medicine , RNA-Seq , Medicine, Chinese Traditional , Body Constitution/genetics
5.
Biomed Mater ; 19(5)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069835

ABSTRACT

Skin aging, characterized by reduced regeneration, chronic inflammation, and heightened skin cancer risk, poses a significant challenge. Collagen fillers have emerged as a potential solution for skin rejuvenation by stimulating collagen regeneration. However, their clinical efficacy is limited by inherent instability and vulnerability toin vivodegradation by collagenase. Chemical cross-linking presents a promising approach to enhance stability, but it carries risks such as cytotoxicity, calcification, and discoloration. Here, we introduce a highly durable 1,4-butanediol diglycidyl ether (BDDE) cross-linked collagen filler for skin rejuvenation. BDDE effectively cross-links collagen, resulting in fillers with exceptional mechanical strength and injectability. These fillers demonstrate favorable stability and durability, promoting proliferation, adhesion, and spreading of human foreskin fibroblast-1 cellsin vitro. In vivostudies confirm enhanced collagen regeneration without inducing calcification. BDDE cross-linked collagen fillers offer promising prospects for medical cosmetology and tissue regeneration.


Subject(s)
Butylene Glycols , Cell Proliferation , Collagen , Cross-Linking Reagents , Fibroblasts , Rejuvenation , Skin Aging , Skin , Humans , Collagen/chemistry , Butylene Glycols/chemistry , Cross-Linking Reagents/chemistry , Fibroblasts/metabolism , Skin Aging/drug effects , Animals , Cell Proliferation/drug effects , Skin/metabolism , Dermal Fillers/chemistry , Biocompatible Materials/chemistry , Materials Testing , Regeneration , Epoxy Compounds/chemistry , Male , Cell Adhesion , Tissue Engineering/methods , Mice
6.
Heliyon ; 10(12): e33199, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021927

ABSTRACT

In the age of digitization, digital transformation has emerged as a crucial pathway for companies to achieve sustainable development. In a sample of 24,103 firm-year observations from 3,508 listed companies in China's A-share market between 2007 and 2020, we investigate the relationship between corporate digital transformation and financing constraints based on dynamic capability theory. The proportion of intangible assets dedicated to digital technology is employed as a measure of the degree of digital transformation, and the SA index is utilized to assess the level of financing constraints. The findings demonstrate that digital transformation plays a significant role in alleviating financing constraints. In addition, greater institutional ownership leads to a pronounced negative correlation between digital transformation and financing constraints. From the perspective of dynamic capability theory, this study provides empirical evidence supporting research on economic consequences associated with digital transformation. Our results may contribute towards government formulation and implementation of policies promoting digital transformation to create a supportive external environment for businesses. Companies must seize opportunities associated with digital transformation to mitigate financing constraints.

7.
Polymers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794602

ABSTRACT

Interest in the development of eco-friendly, sustainable, and convenient bio-based coatings to enhance flame retardancy and antibacterial properties in cotton fabrics is growing. In this work, chitosan was protonated at its amino groups using a method with a high atom economy using an equimolar amount of amino trimethylene phosphonic acid (ATMP), resulting in the fabrication of a single-component chitosan-based multifunctional coating (ATMP-CS), thereby avoiding any additional neutralization or purification steps. Cotton fabrics coated with various loads of ATMP-CS were prepared through a padding-drying-curing process. The morphology, thermal stability, mechanical properties, antibacterial properties, flame-retardant behavior, and flame-retardant mechanism of these fabrics were investigated. The coating exhibited excellent film-forming properties, and it imparted a uniform protective layer onto the surfaces of the cotton fabrics. When the load capacity reached 11.5%, the coated fabrics achieved a limiting oxygen index of 29.7% and successfully passed the VFT test. Moreover, the ATMP-CS coating demonstrated antibacterial rates against Escherichia coli and Staphylococcus aureus reaching 95.1% and 99.9%, respectively. This work presents a straightforward and gentle approach to fabricating colorless, environmentally friendly, and highly efficient fabric coatings that have potential applications in promoting the use of bio-based materials.

8.
Signal Transduct Target Ther ; 9(1): 132, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763973

ABSTRACT

Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.


Subject(s)
Biomarkers, Tumor , Neoplasms , Precision Medicine , Humans , Biomarkers, Tumor/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/drug therapy , Prognosis , Molecular Targeted Therapy
9.
Nat Med ; 30(6): 1680-1688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740994

ABSTRACT

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Psychological Distress , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Female , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Middle Aged , Aged , Prospective Studies , Depression/drug therapy , Anxiety/drug therapy , Treatment Outcome , Progression-Free Survival , Adult , Aged, 80 and over
10.
Sci Rep ; 14(1): 10464, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714792

ABSTRACT

In order to investigate the failure modes and instability mechanism of fractured rock. Uniaxial compression tests were conducted on sandstone specimens with different dip angles. Based on rock energy dissipation theory and fractal theory, the energy evolution characteristics and fragmentation fractal characteristics in the process of deformation and failure of specimens were analyzed. The results show that the peak strength and elastic modulus of fractured rock mass are lower than those of intact samples, and both show an exponential increase with the increase of fracture dip angle. The energy evolution laws of different fracture specimens are roughly similar and can be classified into four stages based on the stress-strain curve: pressure-tight, elastic, plastic, and post-destructive. The total strain energy, elastic strain energy, and dissipated strain energy of the specimen at the peak stress point increased exponentially with crack inclination, and the dissipated strain energy and compressive strength conformed to a power function growth relationship. The distribution of the fragments after the failure of the fracture sample has fractal characteristics, and the fractal dimension increases with the increase of the fracture dip angle. In addition, the higher the compressive strength of the specimen, the greater the energy dissipation, the more serious the degree of fragmentation, and the greater the fractal dimension. The data fitting further shows that there is a power function relationship between the dissipated strain energy and the fractal dimension. The research results can provide a theoretical basis for the stability of rock mass engineering and structural deformation control.

11.
Cogn Neurodyn ; 18(2): 659-671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699610

ABSTRACT

Automatic modulation classification (AMC) is a challenging topic in the development of cognitive radio, which can sense and learn surrounding electromagnetic environments and help to make corresponding decisions. In this paper, we propose to complete the real-time AMC through constructing a lightweight neural network MobileViT driven by the clustered constellation images. Firstly, the clustered constellation images are transformed from I/Q sequences to help extract robust and discriminative features. Then the lightweight neural network called MobileViT is developed for the real-time constellation image classification. Experimental results on the public dataset RadioML 2016.10a with edge computing platform demonstrate the superiority and efficiency of MobileViT. Furthermore, the extensive ablation tests prove the robustness of the proposed method to the learning rate and batch size. To the best of our knowledge, this is the first attempt to deploy the deep learning model to complete the real-time classification of modulation schemes of received signals at the edge.

12.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640241

ABSTRACT

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Blood Glucose Self-Monitoring , Blood Glucose , Continuous Glucose Monitoring , Reproducibility of Results , Glucose , Diabetes Mellitus/diagnosis
13.
Inorg Chem ; 63(18): 8294-8301, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38650372

ABSTRACT

Cationic substitution demonstrates significant potential for regulating structural dimensionality and physicochemical performance owing to the cation-size effect. Leveraging this characteristic, this study synthesized a new family of K4AeP2S8 (Ae = alkaline earth elements: Mg, Ca, Sr, and Ba) thiophosphates, involving the substitution of Ae2+ cations. The synthesized compounds crystallized in distinct space groups, monoclinic P2/c (Ae = Mg) versus orthorhombic Ibam (Ae = Ca, Sr, and Ba), exhibiting intriguing dimensionality transformations from zero-dimensional (0D) [Mg2P4S16]8- clusters in K4MgP2S8 to 1D ∞[AeP2S8]4- chains in other K4AeP2S8 thiophosphates owing to the varying ionic radii of Ae2+ cations, Ae-S bond lengths, and coordination numbers of AeSn (Mg: n = 6 versus other: n = 8). Experimental investigations revealed that K4AeP2S8 thiophosphates featured wide optical bandgaps (3.37-3.64 eV), and their optical absorptions were predominantly influenced by the S 3p and P 3s orbitals, with negligible contributions from the K and Ae cations. Notably, within the K4AeP2S8 series, birefringence (Δn) increased from K4MgP2S8 (Δn = 0.034) to other K4AeP2S8 (Δn = 0.050-0.079) compounds, suggesting that infinite 1D chains more significantly influence Δn origins than 0D clusters, thus offering a feasible approach for enhancing optical anisotropy and exploring potential new birefringent materials.

14.
Med Res Rev ; 44(4): 1768-1799, 2024 07.
Article in English | MEDLINE | ID: mdl-38323921

ABSTRACT

Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Humans , Nucleotidyltransferases/metabolism , Membrane Proteins/agonists , Membrane Proteins/immunology , Membrane Proteins/metabolism , Animals , Adjuvants, Vaccine/pharmacology , Adjuvants, Vaccine/chemistry , Signal Transduction/drug effects , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Immunity, Innate/drug effects , Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/immunology
15.
Quant Imaging Med Surg ; 14(2): 1985-1993, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415123

ABSTRACT

Background: Multiphase contrast-enhanced computed tomography (CECT) is a commonly used modality in pediatric computed tomography (CT) scans. However, the purposes and focus of each phase, such as CT angiography (CTA), and parenchymal phase, are different. In routine practice, the same scanning parameters are used for all phases, resulting in unnecessary radiation exposure for children. Accurately and rapidly adjusting the scanning parameters for each phase of CECT is challenging in clinical settings. This retrospective cross-sectional study was designed to investigate the feasibility of using both CARE kV and CARE Dose 4D to reduce the radiation dose while maintaining diagnostic quality in multiphase CECT scans of children. Methods: Overall, 57 children (33 males and 24 females) who underwent multiphase abdominal CECT in Xinjiang Hospital of Beijing Children's Hospital with an average age of 6.52±4.30 years (range, 0.1-15 years), were enrolled. The tube voltage was automatically modulated using CARE kV. The tube current was automatically modulated using CARE Dose 4D. Different dose saving optimization indices (DI) were used for the three phases: a DI value of 3 was used for the unenhanced CT phase, a DI value of 12 was used for the CTA phase, and a DI value of 7 was used for the parenchymal phase. The tube voltage and volume CT dose index (CTDIvol) were recorded for each phase. Two reviewers subjectively evaluated the overall image quality and noise level of the three phases using a 5-point Likert scale (1-2 points: unqualified, 3 points: qualified, 4 points: better, 5 points: best). The CT and noise values of the descending aorta, liver, and back muscle were measured objectively. The voltage distribution and the image quality and CTDIvol in each phase were compared. Results: The most selected tube voltage in the unenhanced CT, CTA, and parenchymal phases was 100 kV (49/57, 85.96%), 70 kV (36/57, 63.16%), and 80 kV (32/57, 56.14%), respectively. The differences between the three phases were statistically significant (P<0.001). The CTDIvol values of the three phases were 3.99±1.99, 2.02±1.71, and 3.18±2.10 mGy, respectively, with a significant difference between the three phases (P<0.001). The CTDIvol decreased linearly as the DI value increased. All images met the diagnostic requirements. The overall quality scores for the three phases were 4.24±0.42, 4.41±0.49, and 4.50±0.45, respectively, with no significant linear relationship with the change in the DI. Conclusions: The combined use of CARE Dose 4D and CARE kV could effectively reduce the radiation dose in children during multiphase abdominal CECT without compromising the diagnostic image quality.

16.
Oncogene ; 43(14): 1033-1049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366146

ABSTRACT

Circular RNAs (circRNAs) play a crucial role in regulating various tumors. However, their biological functions and mechanisms in gastric cancer (GC) have not been well understood. Here, we discovered a stable cytoplasmic circRNA named circUSP1 (hsa_circ_000613) in GC. CircUSP1 upregulation in GC tissues was correlated with tumor size and differentiation. We observed that circUSP1 promoted GC growth and metastasis. Mechanistically, circUSP1 mainly interacted with the RRM1 domain of an RNA-binding protein (RBP) called HuR, stabilizing its protein level by inhibiting ß-TrCP-mediated ubiquitination degradation. The oncogenic properties of HuR mediated promotive effects of circUSP1 in GC progression. Moreover, we identified USP1 and Vimentin as downstream targets of HuR in post-transcriptional regulation, mediating the effects of circUSP1. The parent gene USP1 also enhanced the viability and mobility of GC cells. Additionally, tissue-derived circUSP1 could serve as an independent prognostic factor for GC, while plasma-derived circUSP1 showed promise as a diagnostic biomarker, outperforming conventional markers including serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA19-9). Our study highlights that circUSP1 promotes GC progression by binding to and stabilizing oncogenic HuR, thereby facilitating the upregulation of USP1 and Vimentin at the post-transcriptional level. These findings suggest that circUSP1 could be a potential therapeutic target and a diagnostic and prognostic biomarker for GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Vimentin/genetics , Vimentin/metabolism , Gene Expression Regulation, Neoplastic , RNA, Circular/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , MicroRNAs/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
17.
Inorg Chem ; 62(51): 21487-21496, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38055418

ABSTRACT

Three thiophosphates including noncentrosymmetric Na6Pb3P4S16 and centrosymmetric K2MIIP2S6 (MII = Mg and Zn) were successfully synthesized in vacuum-sealed silica tubes. Note that interesting multiple six membered-rings (6-MRs) including 6-NaS6-MRs and 6-KSn-MRs (n = 6 and 7) formed by A+-centered polyhedra were discovered in the structures of title thiophosphates and these MR-composed three-dimensional (3D) tunnels show great possibility to facilitate the filling of various structural blocks (such as zero-dimensional (0D) Pb3S10 trimers or one-dimensional (1D) (MIISn)n chains). Na6Pb3P4S16 exhibits the strongest nonlinear optical (NLO) response (5.4 × AgGaS2) with phase-matching (PM) behavior among the known Pb-based PM NLO sulfides, which is much larger than that of Pb3P2S8 (3.5 × AgGaS2); it was verified that such large second harmonic generation (SHG) response in Na6Pb3P4S16 can be attributed to the huge contribution of stereochemically active PbS4 units based on the SHG-density and dipole-moment calculations. Moreover, title thiophosphates show large birefringences (Δn = 0.102-0.21), which indicates that incorporation of [P2S6] dimers or polarized PbS4 units into structures provides positive benefits for the onset of strong optical anisotropy.

18.
BMC Cancer ; 23(1): 1170, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037023

ABSTRACT

BACKGROUND: Immunoglobulin superfamily 6 (IGSF6) is a novel member of the immunoglobulin superfamily and has been implicated in various diseases. However, the specific role of IGSF6 in the anti-tumor immunity within lung adenocarcinoma (LUAD) remains unclear. METHODS: We analyzed the IGSF6 expression in LUAD using data from TCGA, and we performed qRT-PCR and western blotting to validate these findings using tissue samples obtained from LUAD patients. Images of IHC staining were obtained from HPA. To assess the clinical relevance of IGSF6 expression, we utilized UALCAN and SPSS to analyze its association with major clinical features of LUAD. Additionally, we employed ROC curves and survival analysis to evaluate the potential diagnostic and prognostic value of IGSF6 in LUAD. To gain insights into the functional implications of IGSF6, we performed enrichment analysis using the R software clusterProfiler package. Moreover, we utilized TIMER2.0 and TISIDB to investigate the relationship between IGSF6 and immune infiltrates in LUAD. The proportion of tumor-infiltrating immune cells in LUAD was assessed using FCM, and their correlation with IGSF6 expression in tumor tissues was analyzed. The localization of IGSF6 protein on macrophages was confirmed using the HPA and FCM. To determine the regulatory role of IGSF6 on macrophage activity in LUAD, we employed ELISA, FCM, and tumor-bearing models. RESULTS: We discovered that both IGSF6 mRNA and protein levels were significantly decreased in LUAD. Additionally, we observed a negative correlation between IGSF6 expression and TNM stages as well as pathologic stages in LUAD. Notably, IGSF6 exhibited high sensitivity and specificity in diagnosing LUAD, and was positively associated with the survival rate of LUAD patients. Furthermore, IGSF6 expression was closely linked to gene sets involved in immune response. IGSF6 expression showed a positive correlation with immune infiltrates exhibiting anti-tumor activity, particularly M1 macrophages. We confirmed the predominant localization of the IGSF6 protein on the membrane of M1 macrophages. Importantly, the knockdown of IGSF6 resulted in a reduction in the anti-tumor activity of M1 macrophages, thereby promoting tumor progression. CONCLUSION: IGSF6 is a molecule that is essential for the anti-tumor activity of macrophages in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Blotting, Western , Immunoglobulins/genetics , Lung Neoplasms/genetics , Macrophages , Prognosis
19.
Nat Commun ; 14(1): 7430, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973845

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Down-Regulation , DNA Repair , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Homologous Recombination , Histone Demethylases/genetics , Histone Demethylases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
20.
Stud Health Technol Inform ; 308: 777-784, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007810

ABSTRACT

This study investigates how three different extraction methods impact the biological activity and structure characteristics of polysaccharides from the flower of Panax ginseng C.A. Meyer. The three polysaccharides were named AHEP, DWEP and ANEP that extracted by acid solvent (HCL 0.01 mol/L), distilled water and alkali solvent (NaOH 0.01 mol/L) respectively. The results showed that the yield of ANEP was highest compared to the others, as well as the capacity of antioxidant, cholate-binding and inhibition to α-glucosidase were better than AHEP and DWEP (P<0.05). Moreover, the activity retention rate in vitro with simulated digestion demonstrated that ANEP were superior to AHEP and DWEP. The large components, nominated ANEP-1 and ANEP-2, were eluted from the ANEP by DEAE-52-cellulose. UV-Vis and FT-IR analysis demonstrated that ANEP-1 and ANEP-2 had typical characteristic absorption of proteoglycan, but SEM results showed that the surface shapes of ANEP-1 and ANEP-2 were quite different. It can be concluded that ANEP has great potential as an effective strategy for obtaining polysaccharides from ginseng flower.


Subject(s)
Panax , Panax/chemistry , Spectroscopy, Fourier Transform Infrared , Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL