Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732042

Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.


Embryonic Development , Histones , Oocytes , Protein Processing, Post-Translational , Animals , Histones/metabolism , Oocytes/metabolism , Mice , Embryonic Development/genetics , Female , Oogenesis , Lysine/metabolism , In Vitro Oocyte Maturation Techniques , Gene Expression Regulation, Developmental
2.
Water Sci Technol ; 89(3): 635-652, 2024 Feb.
Article En | MEDLINE | ID: mdl-38358494

River energy serves as an indicator of pollutant-carrying capacity (PCC), influencing regional water quality dynamics. In this study, MIKE21 hydrodynamics-water quality models were developed for two scenarios, and grid-by-grid numerical integration of energy was conducted for the Yangtze River's mainstream. Comparison of predicted and measured values at monitoring points revealed a close fit, with average relative errors ranging from 5.17 to 8.37%. The concept of PCC was introduced to assess water flow's ability to transport pollutants during its course, elucidating the relationship between river energy and water quality. A relationship model between Unit Area Energy (UAE) and PCC was fitted (R2 = 0.8184). Temporally, reservoir construction enhanced the smoothness of UAE distribution by 74.47%, attributable to peak shaving and flow regulation. While this flood-drought season energy transfer reduced PCC differences, it concurrently amplified pollutant retention by 40.95%. Spatially, energy distribution fine-tuned PCC values, showcasing binary variation with energy changes and a critical threshold. Peak PCC values for TP, NH3-N, and COD were 2.46, 2.26, and 54.09 t/(km·a), respectively. These insights support local utility regulators and decision-makers in navigating low-carrying capacity, sensitive areas, enhancing targeted water protection measures for increased effectiveness and specificity.


Environmental Pollutants , Rivers , Water Quality , Hydrodynamics , Floods
3.
Infect Dis Poverty ; 12(1): 72, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37563679

BACKGROUND: In the normal life cycle of the parasite (Echinococcus multilocularis) that causes alveolar echinococcosis, domestic and wild carnivores act as definitive hosts, and rodents act as intermediate hosts. The presented study contributes to the research on the distribution and transmission pattern of E. multilocularis in China having identified sheep as an unusual intermediate host taking part in the domestic transmission of alveolar echinococcosis in Gansu Province, China. METHODS: From 2020 to 2021, nine whitish different cyst-like were collected from the liver of sheep in Gansu Province for examination. A near complete mitochondrial (mt) genome and selected nuclear genes were amplified from the cyst-like lesion for identification. To confirm the status of the specimen, comparative analysis with reference sequences, phylogenetic analysis, and network analysis were performed. RESULTS: The isolates displayed ≥ 98.87% similarity to E. multilocularis NADH dehydrogenase sub-unit 1 (nad1) (894 bp) reference sequences deposited in GenBank. Furthermore, amplification of the nad4 and nad2 genes also confirmed all nine samples as E. multilocularis with > 99.30% similarity. Additionally, three nuclear genes, pepck (1545 bp), elp-exons VII and VIII (566 bp), and elp-exon IX (256 bp), were successfully amplified and sequenced for one of the isolates with 98.42% similarity, confirming the isolates were correctly identified as E. multilocularis. Network analysis also correctly placed the isolates with other E. multilocularis. CONCLUSIONS: As a result of the discovery of E. multilocularis in an unusual intermediate host, which is considered to have the highest zoonotic potential, the result clearly demonstrated the necessity for expanded surveillance in the area.


Cysts , Echinococcus multilocularis , Animals , Sheep/genetics , Echinococcus multilocularis/genetics , Phylogeny , China/epidemiology , DNA
4.
Parasitol Res ; 122(5): 1107-1126, 2023 May.
Article En | MEDLINE | ID: mdl-36933066

The identification of additional Echinococcus granulosus sensu lato (s.l.) complex species/genotypes in recent years raises the possibility that there might be more variation among this species in China than is currently understood. The aim of this study was to explore intra- and inter-species variation and population structure of Echinococcus species isolated from sheep in three areas of Western China. Of the isolates, 317, 322, and 326 were successfully amplified and sequenced for cox1, nad1, and nad5 genes, respectively. BLAST analysis revealed that the majority of the isolates were E. granulosus s.s., and using the cox1, nad1, and nad5 genes, respectively, 17, 14, and 11 isolates corresponded to Elodea canadensis (genotype G6/G7). In the three study areas, G1 genotypes were the most prevalent. There were 233 mutation sites along with 129 parsimony informative sites. A transition/transversion ratio of 7.5, 8, and 3.25, respectively, for cox1, nad1, and nad5 genes was obtained. Every mitochondrial gene had intraspecific variations, which were represented in a star-like network with a major haplotype with observable mutations from other distant and minor haplotypes. The Tajima's D value was significantly negative in all populations, indicating a substantial divergence from neutrality and supporting the demographic expansion of E. granulosus s.s. in the study areas. The phylogeny inferred by the maximum likelihood (ML) method using nucleotide sequences of cox1-nad1-nad5 further confirmed their identity. The nodes assigned to the G1, G3, and G6 clades as well as the reference sequences utilized had maximal posterior probability values (1.00). In conclusion, our study confirms the existence of a significant major haplotype of E. granulosus s.s. where G1 is the predominant genotype causing of CE in both livestock and humans in China.


Echinococcosis , Echinococcus granulosus , Animals , Humans , Sheep , Echinococcus granulosus/genetics , Tibet , Echinococcosis/epidemiology , Echinococcosis/veterinary , China , Genotype , Haplotypes , Mutation , Phylogeny , Genetic Variation
5.
Adv Sci (Weinh) ; 10(9): e2206897, 2023 Mar.
Article En | MEDLINE | ID: mdl-36683255

A dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by CC double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure. Three dinitrile derivatives with various linkers are designed as guests (G1, G2, and G3) to form host-guest assemblies with m-TPE Di-EtP5. The morphological control and fluorescence properties of the assemblies are successfully realized. G1 with a shorter alkyl chain as the linker completely threads into the cavities of the host. G2, due to its longer chain length, forms a linear supramolecular polymer upon binding to m-TPE Di-EtP5. G3 differs from G2 by possessing a bulky phenyl group in the middle of the chain, which can be further assembled with m-TPE Di-EtP5 to form supramolecular layered polymer and precipitated out in solution, and can be efficiently applied to photocatalytic reactions.

6.
Beilstein J Org Chem ; 18: 429-437, 2022.
Article En | MEDLINE | ID: mdl-35529891

Herein, we have designed and fabricated a simple and efficient supramolecular self-assembled nanosystem based on host-guest interactions between water-soluble tetraphenylethylene-embedded pillar[5]arene ( m -TPEWP5) and ammonium benzoyl-ʟ-alaninate (G) in an aqueous medium. The obtained assembly of m -TPEWP5 and G showed aggregation-induced emission (AIE) via the blocking of intramolecular phenyl-ring rotations and functioned as an ideal donor. After the loading of eosin Y (EsY) as acceptor on the surface of the assembly of m -TPEWP5 and G, the worm-like nanostructures changed into nanorods, which facilitates a Förster resonance energy transfer (FRET) from the m -TPEWP5 and G assembled donor to the EsY acceptor present in the nanorod assembly. The system comprising m -TPEWP5, G and EsY displayed moderate FRET efficiency (31%) at a 2:1 molar ratio of donor-to-acceptor. Moreover, the obtained supramolecular nanorod assembly could act as a nanoreactor mimicking natural photosynthesis and exhibited a high catalytic efficiency for the photocatalytic dehalogenation reaction of various bromoketone derivatives with good yields in short reaction time in water.

7.
ACS Appl Mater Interfaces ; 13(31): 37466-37474, 2021 Aug 11.
Article En | MEDLINE | ID: mdl-34314153

An orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene (m-TPEWP5) with tetraphenylethene-functionalized on the bridged methylene group (meso-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest (DNS-G) to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system. This novel type of water-soluble AIE-active macrocycle can serve as a potential fluorescent material for cancer diagnosis and therapy. In addition, the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating novel supramolecular structures and functional materials.


Benzylidene Compounds/chemistry , Calixarenes/chemistry , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Benzylidene Compounds/chemical synthesis , Calixarenes/chemical synthesis , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , Drug Carriers/chemical synthesis , Drug Design , Drug Liberation , Female , Fluorescent Dyes/chemical synthesis , Fluorometry , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms/diagnosis , Prodrugs/chemistry , Prodrugs/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Solubility , Water/chemistry
8.
Beilstein J Org Chem ; 17: 139-155, 2021.
Article En | MEDLINE | ID: mdl-33564325

Due to the unique characteristics of macrocycles (e.g., the ease of modification, hydrophobic cavities, and specific guest recognition), they can provide a suitable environment to realize photocatalysis via noncovalent interactions with different substrates. In this minireview, we emphasized the photochemical transformation and catalytic reactivity of different guests based on the binding with various macrocyclic hosts as well as on the role of macrocyclic-hosts-assisted hybrid materials in energy transfer. To keep the clarity of this review, the macrocycles are categorized into the most commonly used supramolecular hosts, including crown ethers, cyclodextrins, cucurbiturils, calixarenes, and pillararenes. This minireview not only summarizes the role that macrocycles play in photocatalytic reactions but also clarifies the photocatalytic mechanisms. Finally, the future research efforts and new pathways to apply macrocycles and supramolecular hybrid materials in photocatalysis are also discussed.

9.
RSC Adv ; 11(60): 38115-38119, 2021 Nov 23.
Article En | MEDLINE | ID: mdl-35498077

Since pillar[5]arene was first discovered in 2008, it has developed into a multifunctional supramolecular host. Its application covers many fields from drug delivery and chemical sensing to the construction of molecular machines, and so on. Supramolecular catalysis based on pillar[n]arenes is one of the hot research topics that has emerged in recent years. In this paper, we have synthesized two water-soluble pillar[5]arenes with peripheral rims bearing opposite charges and investigated their influence on Kemp elimination reaction of 1,2-phenylisoxazole derivatives. It is found that both hosts have a moderate rate acceleration effect on the reaction, and the positively charged host H1 has a greater impact on the reaction rate than the negatively charged host H2.

10.
Angew Chem Int Ed Engl ; 60(17): 9205-9214, 2021 Apr 19.
Article En | MEDLINE | ID: mdl-32794352

The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.

...