Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1405342, 2024.
Article in English | MEDLINE | ID: mdl-38953103

ABSTRACT

Angelica sinensis is a long-standing medicine used by Chinese medical practitioners and well-known for its blood-tonic and blood-activating effects. Ferulic acid, ligustilide, and eugenol in Angelica sinensis activate the blood circulation; however, the material basis of their blood-tonic effects needs to be further investigated. In this study, five homogeneous Angelica sinensis polysaccharides were isolated, and their sugar content, molecular weight, monosaccharide composition, and infrared characteristics determined. Acetylphenylhydrazine (APH) and cyclophosphamide (CTX) were used as inducers to establish a blood deficiency model in mice, and organ indices, haematological and biochemical parameters were measured in mice. Results of in vivo hematopoietic activity showed that Angelica sinensis polysaccharide (APS) could elevate erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 (IL-3) serum levels, reduce tumor necrosis factor-α (TNF-α) level in mice, and promote hematopoiesis in the body by regulating cytokine levels. Biological potency test results of the in vitro blood supplementation indicated strongest tonic activity for APS-H2O, and APS-0.4 has the weakest haemopoietic activity. The structures of APS-H2O and APS-0.4 were characterized, and the results showed that APS-H2O is an arabinogalactan glycan with a main chain consisting of α-1,3,5-Ara(f), α-1,5- Ara(f), ß-1,4-Gal(p), and ß-1,4-Gal(p)A, and two branched chains of ß-t-Gal(p) and α-t-Glc(p) connected to each other in a (1→3) linkage to α-1,3,5-Ara(f) on the main chain. APS-0.4 is an acidic polysaccharide with galacturonic acid as the main chain, consisting of α-1,4-GalA, α-1,2-GalA, α-1,4-Gal, and ß-1,4-Rha. In conclusion, APS-H2O can be used as a potential drug for blood replenishment in patients with blood deficiency, providing a basis for APS application in clinical treatment and health foods, as well as research and development of new polysaccharide-based drugs.

2.
Front Microbiol ; 15: 1377782, 2024.
Article in English | MEDLINE | ID: mdl-38873161

ABSTRACT

Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.

3.
Heliyon ; 10(11): e31990, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912436

ABSTRACT

The tourism network attention as a reflection of tourism demand is closely related to the tourism flow, the differences between the two has become an important criterion for judging the efficiency of destination tourism demand conversion, as well as a manifestation of the balance and coordination of destination tourism industry. Against the background of insufficient release of tourism demand in China, research on the development differences between tourism network attention and tourism flow can provide a basis for demand-side management and high-quality development. Based on the theory of spatial mismatch, this research analyzes the spatial development difference between the tourism network attention and the tourism flow in Shanghai from 2012 to 2021 using methods such as center of gravity model, spatial mismatch index, and two-dimensional combination matrix. The results show: (1) According to the analysis of the center of gravity model, there was a shift of the center of gravity of tourism network attention with the direction of "south-north", while the tourism flow shifted "west-east"; the center of gravity between tourism network attention and tourism flow began to diverge from 2012 to 2016, gradually converged from 2016 to 2019, and then gradually deviated again after 2020. (2) According to the spatial mismatch index, the spatial mismatch types between tourism network attention and tourism flow in various Districts of Shanghai are mainly negative and low mismatch, with high mismatch areas mainly distributed in the eastern and southwestern parts of Shanghai. (3) Combining the two-dimensional combination matrix, it can be observed that the spatial development difference between tourism network attention and tourism flow in Shanghai show a characteristic of "enlarging-shrinking-enlarging". From 2012 to 2016, the spatial development difference between tourism network attention and tourism flow in Shanghai continuously expanded; from 2017 to 2019, the spatial development difference continuously shrank; and from 2020 to 2021, the spatial differences expanded again. (4) The analysis results of the panel data model show that the development of tourism resources and the level of tourism services have a positive promoting effect on the evolution of spatial mismatch, while the social basic development environment has a negative effect. The research results not only meet the needs of evaluating the high-quality development of the tourism industry in the current economic restructuring, providing direction for the high-quality development of the regional tourism industry, but also enrich the research content of network attention as a tourism element participating in the evaluation of tourism industry development quality, and deepen the relationship research between network attention and tourism flow.

4.
RSC Adv ; 14(15): 10703-10713, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567337

ABSTRACT

Chlorpyrifos (CPF) is the most common pesticide entering the food chain and posing a threat to human health. This study presents a new electrochemical biosensor based on molybdenum disulfide nanosheets and nitrogen-doped carbon dot nanocomposite (MoS2@N-CDs) and kidney bean esterase (KdBE), and it is shown to achieve accurate detection of CPF. MoS2@N-CDs were prepared by a facile solvothermal method and characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrochemical characterization confirmed that MoS2@N-CDs facilitated electron transfer and increased the electroactive surface area of the electrode, thereby improved the sensing performance of the electrode. The oxidation peak current of 1-naphthol, which was produced by the hydrolysis of 1-naphthyl acetate catalyzed by KdBE, was adopted as the signal of the sensor. CPF can suppress KdBE activity and consequently cause a decrease in the sensing signal. The experimental results show that the variation of sensing signal is a reliable index to evaluate the CPF level. Under the optimized conditions, the developed enzyme sensor showed superior CPF assay performance with a linear detection range as wide as 0.01-500 µg L-1 and LOD as low as 3.5 × 10-3 µg L-1 (S/N = 3). The inter- and intra-batch RSDs for electrode testing were 4.02% and 2.69%, respectively. Moreover, the developed biosensor also showed good stability and anti-interference. The spiked recoveries of CPF in oilseed rape and cabbage ranged from 98.09% to 106.01% with low relative standard deviation (RSD) (<5.23%), suggesting that the sensor is a promising tool to enable simple, low-cost but highly sensitive large-scale screening of CPF residues in food.

5.
Plant Dis ; 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36256743

ABSTRACT

Strawberry (Fragaria × ananassa Duch.), a widely grown octoploid species, is one of the most important economic fruit crops and has been widely cultivated in the world, including China. In December 2021, a serious crown rot disease (approximately 50% incidence) was observed in strawberry (cultivar Miaoxiang) plantations in Qujing City, Yunnan Province, China. Symptoms observed on aboveground part withered rapidly, reddish-brown marbled necrosis on crown. The roots were healthy and strong, but the plants finally died. To isolate the causal agent of this disease, crown tissues from five strawberry plants showing typical symptoms were cut into pieces of 5×5 mm, and the pieces were surface-sterilized with 75% ethanol for 45 s followed by 2.5% NaClO for 3 min and rinsed thrice with sterile water, and then placed onto potato dextrose agar (PDA) for 7 days at 25 ºC. After 3 to 4 days, extended single hyphal tips from the tissues were transferred to PDA and incubated for 7 days at 25 ºC. The colonies were initially white, later became somewhat zonate, velvety, cyan gray on the upper side and cyan ink pigment ring on the reverse side of plates, with concentric rings of salmon sporodochia. Many yellowish or orange creamy conidial droplets formed on PDA after 14 days at 25 ºC. Fifty-nine isolates were obtained, and three isolates QLYRR1, QLMCR9, and QLMCR39 were selected for further experiments. Conidia were hyaline, cylindrical with rounded ends, 12.17-19.35×3.71-6.30 µm (average±SD, 15.24±1.37×5.09±0.45 µm, n=150), L/W ratio = 2.99. The three isolates were molecularly identified using the genomic regions of internal transcribed spacer (ITS), actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and beta-tubulin (TUB2) genes, and the sequences were deposited in GenBank (accession nos. QLYRR1, QLMCR9, QLMCR39: ON668272, ON668256, ON668257[ITS], ON684302, ON684300, ON684301[ACT], ON684316, ON684314, ON684315[CHS-1], ON684292, ON684290, ON684291[GAPDH], ON684286, ON684284, ON684285[TUB2]). The phylogenetic analysis of experimental strains was performed by Maximum-likelihood (ML) tree and Bayesian inference (BI) method. Nucleotide sequences exhibited three isolates were clustered with the ex-type strain C. pandanicola strain MFLUCC 170571T found in Thailand, C. pandanicola strains (SAUCC201152, SAUCC200204) found in Shandong Province, and the holotype stain C. parvisporum YMF 1.06942T found in Guangxi Province, China. Morphologically, isolates were easily distinguished from C. parvisporum by the colony on PDA and the size of conidia (Yu et al. 2022). Morphological characteristics and phylogenetic analyses revealed that QLYRR1, QLMCR9, and QLMCR39 belong to C. pandanicola, the members of the C. gloeosporioides species complex (Tibpromma et al. 2018; Mu et al. 2021). Koch's postulates were tested by strawberry plants (two cultivars, Akihime and Miaoxiang) in vivo, strawberry plants were tested for the three isolates by spraying 1×106 conidia/mL suspension on three seedlings. Three seedlings sprayed with sterile distilled water were served as control. All of the plants were transferred to a glasshouse with a 28/20 °C day/night temperature range and natural sunlight. After 6 weeks, QLYRR1-, QLMCR9-, and QLMCR39-sprayed seedlings were stunted and developed typical wilt symptoms similar to those observed in the field with the incidence for 3, 3, and 3 seedlings, respectively. The negative control remained asymptomatic. The fungi were reisolated again from lesions of diseased plants and leaves with 100% frequency, and morphological characteristics and tested gene sequences were identical to the original isolates in this note, thus fulfilling Koch's postulates. C. pandanicola was described from the healthy leaves of Pandanus sp. and the lesion fruits of Juglans regia. To our knowledge, this is the first report confirming C. pandanicola causes anthracnose crown rot on strawberries in China. C. pandanicola has the potential for causing serious losses to the strawberry industry, and research is needed on management strategies to minimize losses.

6.
Front Microbiol ; 13: 881450, 2022.
Article in English | MEDLINE | ID: mdl-35651487

ABSTRACT

Anthracnose caused by Colletotrichum spp. was widespread in recent years and resulted in great damage to strawberry production. Soil microbial communities were key contributors to host nutrition, development, and immunity; however, the difference between the microbial communities of healthy and anthracnose-infected strawberry rhizosphere soils remains unclear. In this study, the Illumina sequencing technique was used to comparatively study the prokaryotic and fungal community compositions and structures between healthy and anthracnose-infected strawberry rhizosphere soils in Yuxi, Yunnan Province. Both microbial community diversities and richness of anthracnose-infected strawberry rhizosphere soils were higher than those of healthy strawberry rhizosphere soils. A total of 2,518 prokaryotic and 556 fungal operational taxonomic units (OTUs) were obtained at the 97% similarity threshold. Proteobacteria, Thaumarchaeota, and Acidobacteria were the dominant prokaryotic phyla; Ascomycota, unclassified_k__Fungi, and Mortierellomycota were the dominant fungal phyla. The relative abundances of beneficial bacterial phyla Actinobacteria and Firmicutes, genera Streptomyces, Azospirillum, and Bacillus were significantly reduced in anthracnose-infected strawberry rhizosphere soils; the relative abundance of beneficial fungal species Trichoderma asperellum shows a similar tendency with bacterial abundance. Besides Colletotrichum, 15 other potential fungal pathogen genera and seven fungal pathogen species were identified; among the potential pathogen genera and species, eight pathogen genera and Fusarium oxysporum showed significant differences between healthy and anthracnose-infected strawberry rhizosphere soils. The results suggested that strawberry planted in this area may be infected by other fungal pathogens except for Colletotrichum spp. Our present research will provide theoretical basis and data reference for the isolation and identification of strawberry pathogens and potential probiotics in future works.

7.
Gels ; 8(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35323298

ABSTRACT

Polymer gel is the most widely used plugging agent in profile control, whose formula and injected speed are very important process parameters. It is very significant to study the effect of shear rates on the dynamic gelation of polymer gel in porous media for selecting suitable formula and injection speed. Taking the phenol formaldehyde resin gel with static gelation time of 21 h in ampoule bottle as research objective, it was studied the dynamic gelation process and subsequent water flooding in porous media under different injected speeds by a circulated equipment. The results shown that final dynamic gelation time is 2.4 times longer than the static gelation time in porous media. The gel particles are formed and mainly accumulated in the near wellbore zone after dynamic gelation. Injection speed has little effect on the dynamic gelation time in porous media, but has a great effect on the gel strength. The effect of injection speed on dynamic gel strength is evaluated by established the quantitative relationship between shear rate and dynamic gel strength. According to subsequent water flooding results, gel particles have certain plugging capacity in the near wellbore zone. The plugging ability declines obviously with an increasing injection speed. The experimental results provide theoretical support for the successful application of polymer gel used in profile control.

8.
PLoS One ; 8(10): e76920, 2013.
Article in English | MEDLINE | ID: mdl-24130811

ABSTRACT

Bacillus nematocida B16 has been shown to use "Trojan horse" mechanism in pathogenesis that has characteristics of "social" behavior. The ComP-ComA system, a conserved quorum sensing system in the genus Bacillus, functions in many physiological processes including competence development, lipopeptide antibiotic surfactin production, degradative enzyme production and even some unknown functions. Here we investigated the requirement of ComP-ComA system in B. nematocida B16 for its pathogenicity against nematodes. The ΔcomP mutant displayed deficiencies in attracting and killing nematodes, due to the absence of attractive signal molecules and the decreased expressions of virulence factors, respectively. Contrarily, a complemented comP mutant at least partially resumed its pathogenicity. Our data from transcriptional analysis further confirmed that this signaling system directly or indirectly regulated the expressions of two major virulence proteases in the infection of B. nematocida B16. Bioinformatics analyses from comparative genomics also suggested that the potential target genes of transcription factor ComA were involved in the processes such as the synthesis of attractants, production of extracellular degradative enzymes and sortase, secondary metabolites biosynthesis, regulation of transcription factors, mobility, as well as transporters, most of which were different from a saprophytic relative B. subtilis 168. Therefore, our investigation firstly revealed that the participation and necessity of ComP-ComA signaling system in bacterial pathogenesis.


Subject(s)
Bacillus/cytology , Bacillus/metabolism , Bacterial Proteins/metabolism , Quorum Sensing , Transcription Factors/metabolism , Animals , Bacillus/genetics , Bacillus/physiology , Extracellular Space/metabolism , Gene Expression Regulation, Bacterial , Nematoda/microbiology , Peptide Hydrolases/metabolism , Transcription, Genetic
9.
J Mol Microbiol Biotechnol ; 21(3-4): 130-7, 2011.
Article in English | MEDLINE | ID: mdl-22286040

ABSTRACT

Proteases Bace16 and Bae16, an alkaline serine protease and a neutral protease, respectively, in the nematocidal bacterium Bacillus nematocida B16, have been identified as two key virulence factors and shown to have remarkable nematotoxic activities against the free-living nematode Panagrellus redivius and the plant parasite nematode Bursaphelenchus xylophilus. To facilitate the successful biological control application of this organism in the field, we genetically altered the strain B. nematocida B16 and optimized its growth condition to overexpress these two pathogenic proteases. The recombinant integration vectors of pAX01-Bace16 and pAX01-Bae16 for overexpressing the two proteases were constructed and successfully transformed into competent cells of the bacterium B. nematocida B16. The optimal induction condition for overexpressing Bace16 is 2% xylose at 37°C for 48 h. Our analyses showed that the proteolytic activity and nematocidal activity of the strain overexpressing Bace16 increased by about 62 and 80%, respectively, over the wild-type strain. However, our tested induction conditions could not significantly improve either the proteolytic activity or the nematocidal activity of the Bae16 overexpression mutant.


Subject(s)
Bacillus/genetics , Bacillus/pathogenicity , Gene Expression , Peptide Hydrolases/biosynthesis , Rhabditida/microbiology , Rhabditida/physiology , Virulence Factors/biosynthesis , Animals , Gene Expression Regulation, Bacterial , Organisms, Genetically Modified , Peptide Hydrolases/genetics , Survival Analysis , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL