Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37021547

ABSTRACT

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Proteomics , Neoplastic Stem Cells/metabolism , Lipid Metabolism , Homeostasis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use , Cholesterol
4.
Br J Haematol ; 200(6): 691-693, 2023 03.
Article in English | MEDLINE | ID: mdl-36441107

ABSTRACT

In their paper the authors describe distinct transcriptomic changes associated to treatment response in core bone marrow biopsies from patients with acute myeloid leukaemia. This finding raises the possibility that stratifying patients for treatment according to their transcriptomic profiles could improve patients' response and prognosis. Commentary on: Treaba et al. Transcriptomics of AML core bone marrow biopsies reveals distinct therapy response-specific osteo-mesenchymal profiles. Br J Haematol 2023;200:740-754.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Bone Marrow/pathology , Prognosis , Biopsy
5.
Nat Cancer ; 4(1): 27-42, 2023 01.
Article in English | MEDLINE | ID: mdl-36581735

ABSTRACT

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , Child , Leukemia, Myeloid, Acute/genetics , Bone Marrow/pathology , T-Lymphocytes, Regulatory/pathology , Inflammation/pathology , Risk Assessment , Tumor Microenvironment
6.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892395

ABSTRACT

Plants synthetize a large spectrum of secondary metabolites with substantial structural and functional diversity, making them a rich reservoir of new biologically active compounds. Among different plant lineages, the evolutionarily ancient branch of non-vascular plants (Bryophytes) is of particular interest as these organisms produce many unique biologically active compounds with highly promising antibacterial properties. Here, we characterized antibacterial activity of metabolites produced by different ecotypes (strains) of the model mosses Physcomitrium patens and Sphagnum fallax. Ethanol and hexane moss extracts harbor moderate but unstable antibacterial activity, representing polar and non-polar intracellular moss metabolites, respectively. In contrast, high antibacterial activity that was relatively stable was detected in soluble exudate fractions of P. patens moss. Antibacterial activity levels in P. patens exudates significantly increased over four weeks of moss cultivation in liquid culture. Interestingly, secreted moss metabolites are only active against a number of Gram-positive, but not Gram-negative, bacteria. Size fractionation, thermostability and sensitivity to proteinase K assays indicated that the secreted bioactive compounds are relatively small (less than <10 kDa). Further analysis and molecular identification of antibacterial exudate components, combined with bioinformatic analysis of model moss genomes, will be instrumental in the identification of specific genes involved in the bioactive metabolite biosynthesis.

8.
Science ; 377(6602): eabg9302, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35709248

ABSTRACT

Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related orphan receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Interleukin-17 , Receptors, Interleukin-17 , Wound Healing , Animals , Epithelium/injuries , Epithelium/metabolism , Gene Expression Profiling , Humans , Hypoxia/immunology , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-17/metabolism , Mice , Signal Transduction , Single-Cell Analysis , T-Lymphocytes/immunology , Wound Healing/immunology
9.
Haematologica ; 107(8): 1746-1757, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34937317

ABSTRACT

Despite improvements in outcomes for children with B- and T-cell acute lymphoblastic leukemia (B-ALL and T-ALL), patients with resistant or relapsed disease fare poorly. Previous studies have demonstrated the essential role of cyclin D3 in T-ALL disease initiation and progression and that targeting of the CDK4/6-cyclin D complex can suppress T-ALL proliferation, leading to efficient cell death in animal models. Studies in leukemia and other malignancies, suggest that schedule is important when combining CDK4/6 inhibitors (CDKi) with cytotoxic agents. Based on these observations, we broadened evaluation of two CDKi, palbociclib (PD-0332991, Pfizer) and ribociclib (LEE011, Novartis) in B- and T-ALL as single agent and in combination with conventional cytotoxic chemotherapy, using different schedules in preclinical models. As monotherapy, CDKi caused cell cycle arrest with a significant decrease in S phase entry and were active in vivo across a broad number of patient-derived xenograft samples. Prolonged monotherapy induces resistance, for which we identified a potential novel mechanism using transcriptome profiling. Importantly, simultaneous but not sequential treatment of CDKi with conventional chemotherapy (dexamethasone, L-asparaginase and vincristine) led to improved efficacy compared to monotherapy in vivo. We provide novel evidence that combining CDKi and conventional chemotherapy can be safe and effective. These results led to the rational design of a clinical trial.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6/metabolism , Drug Combinations , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
10.
Blood Adv ; 5(18): 3592-3608, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34550328

ABSTRACT

Multiple myeloma (MM) is a plasma cell malignancy characterized by the presence of multiple foci in the skeleton. These distinct tumor foci represent cycles of tumor growth and dissemination that seed new clusters and drive disease progression. By using an intratibial Vk*MYC murine myeloma model, we found that CD169+ radiation-resistant tissue-resident macrophages (MPs) were critical for early dissemination of myeloma and disease progression. Depletion of these MPs had no effect on tumor proliferation, but it did reduce egress of myeloma from bone marrow (BM) and its spread to other bones. Depletion of MPs as a single therapy and in combination with BM transplantation improved overall survival. Dissemination of myeloma was correlated with an increased inflammatory signature in BM MPs. It was also correlated with the production of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by tumor-associated MPs. Exogenous intravenous IL-6 and TNFα can trigger myeloma intravasation in the BM by increasing vascular permeability in the BM and by enhancing the motility of myeloma cells by reducing the adhesion of CD138. Moreover, mice that lacked IL-6 had defects in disseminating myeloma similar to those in MP-depleted recipients. Mice that were deficient in TNFα or TNFα receptor (TNFR) had defects in disseminating MM, and engraftment was also impaired. These effects on dissemination of myeloma required production of cytokines in the radiation-resistant compartment that contained these radiation-resistant BM MPs. Taken together, we propose that egress of myeloma cells from BM is regulated by localized inflammation in foci, driven in part by CD169+ MPs.


Subject(s)
Multiple Myeloma , Animals , Bone Marrow , Interleukin-6 , Macrophages , Mice , Tumor Necrosis Factor-alpha
11.
Front Cell Dev Biol ; 9: 622519, 2021.
Article in English | MEDLINE | ID: mdl-33777933

ABSTRACT

Single-cell sequencing approaches have transformed our understanding of stem cell systems, including hematopoiesis and its niche within the bone marrow. Recent reports examined the bone marrow microenvironment at single-cell resolution at steady state, following chemotherapy treatment, leukemic onset, and aging. These rapid advancements significantly informed our understanding of bone marrow niche heterogeneity. However, inconsistent representation and nomenclature among the studies hinder a comprehensive interpretation of this body of work. Here, we review recent reports interrogating bone marrow niche architecture and present an integrated overview of the published datasets.

12.
Nat Immunol ; 22(4): 396-397, 2021 04.
Article in English | MEDLINE | ID: mdl-33753941
14.
Cell Stem Cell ; 27(1): 19-34, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32619515

ABSTRACT

Single-cell sequencing approaches offer exploration of tissue architecture at unprecedented resolution. These tools are especially powerful when deconvoluting highly specialized microenvironments, such as stem cell (SC) niches. Here, we review single-cell studies that map the cellular and transcriptional makeup of stem and progenitor niches and discuss how these high-resolution analyses fundamentally advance our understanding of how niche factors shape SC biology and activity. In-depth characterization of the blueprint of SC-niche crosstalk, as well as understanding how it becomes dysregulated, will undoubtedly inform the development of more efficient therapies for malignancies and other pathologies.


Subject(s)
Stem Cell Niche
15.
Cancer Cell ; 37(6): 867-882.e12, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32470390

ABSTRACT

A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.


Subject(s)
Monocytes/immunology , Neoplasm Recurrence, Local/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Microenvironment/immunology , Adolescent , Adult , Animals , Antineoplastic Agents/pharmacology , Bone Marrow Transplantation , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Mice, Inbred C57BL , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Proteome/analysis , RNA-Seq , Retrospective Studies , Single-Cell Analysis , Survival Rate , Young Adult
16.
J Immunol ; 204(12): 3351-3359, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32321756

ABSTRACT

During normal T cell development in the thymus, αß TCRs signal immature thymocytes to differentiate into mature T cells by binding to peptide-MHC ligands together with CD4/CD8 coreceptors. Conversely, in MHC and CD4/CD8 coreceptor-deficient mice, the thymus generates mature T cells expressing MHC-independent TCRs that recognize native conformational epitopes rather than linear antigenic-peptides presented by MHC. To date, no structural information of MHC-independent TCRs is available, and their structural recognition of non-MHC ligand remains unknown. To our knowledge in this study, we determined the first structures of two murine MHC-independent TCRs (A11 and B12A) that bind with high nanomolar affinities to mouse adhesion receptor CD155. Solution binding demonstrated the Vαß-domain is responsible for MHC-independent B12A recognition of its ligand. Analysis of A11 and B12A sequences against various MHC-restricted and -independent TCR sequence repertoires showed that individual V-genes of A11 and B12A did not exhibit preference against MHC-restriction. Likewise, CDR3 alone did not discriminate against MHC binding, suggesting VDJ recombination together with Vα/Vß pairing determine their MHC-independent specificity for CD155. The structures of A11 and B12A TCR are nearly identical to those of MHC-restricted TCR, including the conformations of CDR1 and 2. Mutational analysis, together with negative-staining electron microscopy images, showed that the CDR regions of A11 and B12A recognized epitopes on D1 domain of CD155, a region also involved in CD155 binding to poliovirus and Tactile in human. Taken together, MHC-independent TCRs adopt canonical TCR structures to recognize native Ags, highlighting the importance of thymic selection in determining TCR ligand specificity.


Subject(s)
Major Histocompatibility Complex/physiology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Virus/metabolism , Animals , HEK293 Cells , Humans , Ligands , Mice , Peptides/metabolism , Poliovirus/metabolism , Protein Binding , Protein Domains , Thymocytes/metabolism , V(D)J Recombination/physiology
17.
Nat Immunol ; 20(9): 1196-1207, 2019 09.
Article in English | MEDLINE | ID: mdl-31406379

ABSTRACT

The response to systemic infection and injury requires the rapid adaptation of hematopoietic stem cells (HSCs), which proliferate and divert their differentiation toward the myeloid lineage. Significant interest has emerged in understanding the signals that trigger the emergency hematopoietic program. However, the mechanisms that halt this response of HSCs, which is critical to restore homeostasis, remain unknown. Here we reveal that the E3 ubiquitin ligase Speckle-type BTB-POZ protein (SPOP) restrains the inflammatory activation of HSCs. In the absence of Spop, systemic inflammation proceeded in an unresolved manner, and the sustained response in the HSCs resulted in a lethal phenotype reminiscent of hyper-inflammatory syndrome or sepsis. Our proteomic studies decipher that SPOP restricted inflammation by ubiquitinating the innate signal transducer myeloid differentiation primary response protein 88 (MYD88). These findings unearth an HSC-intrinsic post-translational mechanism that is essential for reestablishing homeostasis after emergency hematopoiesis.


Subject(s)
Inflammation/immunology , Leukocytosis/immunology , Myeloid Differentiation Factor 88/metabolism , Neutrophils/immunology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Female , HEK293 Cells , Hematopoiesis/immunology , Humans , Male , Mice , Neutrophils/cytology , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases/metabolism
19.
Nature ; 569(7755): 222-228, 2019 05.
Article in English | MEDLINE | ID: mdl-30971824

ABSTRACT

The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.


Subject(s)
Bone Marrow/blood supply , Cellular Microenvironment , Hematopoiesis , Hematopoietic Stem Cells , Single-Cell Analysis , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cell Differentiation , Cell Lineage , Endothelium, Vascular/cytology , Female , Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Male , Mice , Myeloid Cells/cytology , Myeloid Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , RNA-Seq , Receptors, Notch/metabolism , Stem Cell Niche/genetics , Stress, Physiological/genetics , Transcriptome/genetics
20.
Nat Commun ; 10(1): 1019, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30833553

ABSTRACT

The αß T cell receptor (TCR) repertoire on mature T cells is selected in the thymus, but the basis for thymic selection of MHC-restricted TCRs from a randomly generated pre-selection repertoire is not known. Here we perform comparative repertoire sequence analyses of pre-selection and post-selection TCR from multiple MHC-sufficient and MHC-deficient mouse strains, and find that MHC-restricted and MHC-independent TCRs are primarily distinguished by features in their non-germline CDR3 regions, with many pre-selection CDR3 sequences not compatible with MHC-binding. Thymic selection of MHC-independent TCR is largely unconstrained, but the selection of MHC-specific TCR is restricted by both CDR3 length and specific amino acid usage. MHC-restriction disfavors TCR with CDR3 longer than 13 amino acids, limits positively charged and hydrophobic amino acids in CDR3ß, and clonally deletes TCRs with cysteines in their CDR3 peptide-binding regions. Together, these MHC-imposed structural constraints form the basis to shape VDJ recombination sequences into MHC-restricted repertoires.


Subject(s)
Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Amino Acid Sequence , Animals , Complementarity Determining Regions/genetics , Lymphocyte Activation , Major Histocompatibility Complex/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, Protein , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , V(D)J Recombination
SELECTION OF CITATIONS
SEARCH DETAIL