Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Viruses ; 16(4)2024 03 27.
Article En | MEDLINE | ID: mdl-38675856

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Viral Proteins/genetics , Viral Proteins/metabolism , Retroelements , Genetic Variation , Prophages/genetics , DNA, Viral/genetics , DNA Primase/genetics , DNA Primase/metabolism , Genomics/methods , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
2.
Viruses ; 16(3)2024 02 29.
Article En | MEDLINE | ID: mdl-38543751

Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.


Bacteriophages , Endopeptidases , Staphylococcal Infections , Humans , Staphylococcus aureus , Bacteriophages/genetics , Staphylococcus , Staphylococcus epidermidis , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms
3.
Viruses ; 16(1)2024 01 07.
Article En | MEDLINE | ID: mdl-38257793

Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.


Bacillaceae , Bacteriophages , Endopeptidases , Methicillin-Resistant Staphylococcus aureus , Staphylococcus , Staphylococcus epidermidis , Bacteriophages/genetics , Biofilms , Escherichia coli/genetics
4.
Viruses ; 15(12)2023 12 15.
Article En | MEDLINE | ID: mdl-38140678

Stenotrophomonas rhizophila was first discovered in soil; it is associated with the rhizosphere and capable of both protecting roots and stimulating plant growth. Therefore, it has a great potential to be used in biocontrol. The study of S. rhizophila phages is important for a further evaluation of their effect on the fitness and properties of host bacteria. A novel phage StenR_269 and its bacterial host S. rhizophila were isolated from a soil sample in the remediation area of a coal mine. Electron microscopy revealed a large capsid (~Ø80 nm) connected with a short tail, which corresponds to the podovirus morphotype. The length of the genomic sequence of the StenR_269 was 66,322 bp and it contained 103 putative genes; 40 of them encoded proteins with predicted functions, 3 corresponded to tRNAs, and the remaining 60 were identified as hypothetical ones. Comparative analysis indicated that the StenR_269 phage had a similar genome organization to that of the unclassified Xanthomonas phage DES1, despite their low protein similarity. In addition, the signature proteins of StenR_269 and DES1 had low similarity and these proteins clustered far from the corresponding proteins of classified phages. Thus, the StenR_269 genome is orphan and the analyzed data suggest a new family in the class Caudoviricetes.


Bacteriophages , Genome, Viral , Bacteriophages/genetics , Genomics , Capsid Proteins/genetics , Soil
5.
J Clin Med ; 12(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-38137770

BACKGROUND AND AIMS: Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS: FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS: Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION: The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.

6.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article En | MEDLINE | ID: mdl-38139153

Diversity-generating retroelements (DGRs) are prokaryotic systems providing rapid modification and adaptation of target proteins. In phages, the main targets of DGRs are receptor-binding proteins that are usually parts of tail structures and the variability of such host-recognizing structures enables phage adaptation to changes on the bacterial host surface. Sometimes, more than one target gene containing a hypermutated variable repeat (VR) can be found in phage DGRs. The role of mutagenesis of two functionally different genes is unclear. In this study, several phage genomes that contain DGRs with two target genes were found in the gut virome of healthy volunteers. Bioinformatics analysis of these genes indicated that they encode proteins with different topology; however, both proteins contain the C-type lectin (C-lec) domain with a hypermutated beta-hairpin on its surface. One of the target proteins belongs to a new family of proteins with a specific topology: N-terminal C-lec domain followed by one or more immunoglobulin domains. Proteins from the new family were named tentaclins after TENTACLe + proteIN. The genes encoding such proteins were found in the genomes of prophages and phages from the gut metagenomes. We hypothesized that tentaclins are involved in binding either to bacterial receptors or intestinal/immune cells.


Bacteriophage Receptors , Bacteriophages , Humans , Bacteriophage Receptors/genetics , Carrier Proteins/genetics , Proteins/genetics , Bacteriophages/genetics , Prophages/genetics , Bacteria/genetics , Retroelements
7.
J Parasitol ; 104(3): 337-341, 2018 06.
Article En | MEDLINE | ID: mdl-29420923

In southern regions of Western Siberia, Ixodes persulcatus ticks co-exist with Ixodes pavlovskyi. Both tick species have similar morphology, and natural hybridization of I. persulcatus and I. pavlovskyi ticks has been observed. To investigate the role of I. pavlovskyi ticks and I. persulcatus/ I. pavlovskyi hybrids as vectors, correct identification of tick species is necessary. The nuclear crt gene might be useful in distinguishing I. persulcatus from I. pavlovskyi ticks. Genetic variability in this gene has been studied and substantial differences between crt gene sequences of I. persulcatus and I. pavlovskyi ticks has been demonstrated. In this study, maximum-likelihood analysis showed that sequences of I. persulcatus and I. pavlovskyi ticks were identical or highly homologous among themselves. These results were confirmed by a Bayesian phylogeny. We conclude that crt gene sequences of I. persulcatus and I. pavlovskyi cannot be used for distinguishing these tick species and that the conflicting results of prior studies reflect samples from incorrectly identified ticks rather than real genetic differences between I. persulcatus and I. pavlovskyi.


Arachnid Vectors/genetics , Calreticulin/genetics , Ixodes/genetics , Animals , Arachnid Vectors/classification , Base Sequence , Bayes Theorem , Estonia , Europe , Asia, Eastern , Genetic Variation , Ixodes/classification , Kazakhstan , Likelihood Functions , Phylogeny , Sequence Homology , Siberia
8.
Genome Announc ; 4(4)2016 Aug 11.
Article En | MEDLINE | ID: mdl-27516510

We report here the complete genome sequence of Sendai virus Moscow strain. Anecdotal evidence for the efficacy of oncolytic virotherapy exists for this strain. The RNA genome of the Moscow strain is 15,384 nucleotides in length and differs from the nearest strain, BB1, by 18 nucleotides and 11 amino acids.

9.
Genome Announc ; 2(6)2014 Dec 24.
Article En | MEDLINE | ID: mdl-25540343

Lyme disease, caused by bacteria of the Borrelia burgdorferi sensu lato complex, is the most frequent tick-borne infection in Eurasia. Here, we report the complete genome sequence of the Borrelia valaisiana Tom 4006 and Borrelia afzelii Tom 3107 strains isolated from Ixodes persulcatus ticks in western Siberia.

10.
Infect Genet Evol ; 12(2): 435-42, 2012 Mar.
Article En | MEDLINE | ID: mdl-22326537

Human astrovirus is one of the etiological agents of acute gastroenteritis in humans, mostly in young children and elderly people. Complete genome sequencing of four human astrovirus strains isolated in Novosibirsk, Russia was performed. Analysis of these sequences and the sequences available in GenBank database has detected numerous potential recombination breakpoints. For the first time the rate of human astrovirus evolution was estimated based on the genome fragments without recombination breakpoints; the determined rate is typical of the RNA viruses with high evolutionary rate, amounting to approximately 3.7 × 10(-3) nucleotide substitutions per site per year, and for the synonymous changes, 2.8 × 10(-3) nucleotide substitutions per site per year.


Evolution, Molecular , Mamastrovirus/genetics , Amino Acid Substitution , Genetic Variation , Humans , Mamastrovirus/classification , Mutation Rate , Open Reading Frames , Phylogeny , RNA, Viral
...