Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38339200

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.


Cataract , Crystallins , Lens, Crystalline , alpha-Crystallins , Humans , Lens, Crystalline/metabolism , Cataract/metabolism , Crystallins/metabolism , Cholesterol/metabolism , Lipids
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38339214

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Cataract , Hypertension , Lens, Crystalline , alpha-Crystallins , Humans , Male , Female , Middle Aged , Aged , Nuclear Envelope/metabolism , Lens, Crystalline/metabolism , Cataract/pathology , Cholesterol/metabolism , Hypertension/metabolism
3.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article En | MEDLINE | ID: mdl-37686406

Several discoveries show that with age and cataract formation, ß-crystallin binds with the lens membrane or associates with other lens proteins, which bind with the fiber cell plasma membrane, accompanied by light scattering and cataract formation. However, how lipids (phospholipids and sphingolipids) and cholesterol (Chol) influence ß-crystallin binding to the membrane is unclear. This research aims to elucidate the role of lipids and Chol in the binding of ß-crystallin to the membrane and the membrane's physical properties (mobility, order, and hydrophobicity) with ß-crystallin binding. We used electron paramagnetic resonance (EPR) spin-labeling methods to investigate the binding of ßL-crystallin with a model of porcine lens-lipid (MPLL), model of mouse lens-lipid (MMLL), and model of human lens-lipid (MHLL) membrane with and without Chol. Our results show that ßL-crystallin binds with all of the investigated membranes in a saturation manner, and the maximum parentage of the membrane surface occupied (MMSO) by ßL-crystallin and the binding affinity (Ka) of ßL-crystallin to the membranes followed trends: MMSO (MPLL) > MMSO (MMLL) > MMSO (MHLL) and Ka (MHLL) > Ka (MMLL) ≈ Ka (MPLL), respectively, in which the presence of Chol reduces the MMSO and Ka for all membranes. The mobility near the headgroup regions of the membranes decreases with an increase in the binding of ßL-crystallin; however, the decrease is more pronounced in the MPLL and MMLL membranes than the MHLL membrane. In the MPLL and MMLL membranes, the membranes become slightly ordered near the headgroup with an increase in ßL-crystallin binding compared to the MHLL membrane. The hydrophobicity near the headgroup region of the membrane increases with ßL-crystallin binding; however, the increase is more pronounced in the MPLL and MMLL membranes than the MHLL membrane, indicating that ßL-crystallin binding creates a hydrophobic barrier for the passage of polar molecules, which supports the barrier hypothesis in cataract formation. However, in the presence of Chol, there is no significant increase in hydrophobicity with ßL-crystallin binding, suggesting that Chol prevents the formation of a hydrophobic barrier, possibly protecting against cataract formation.


Cataract , Crystallins , Lens, Crystalline , Mice , Humans , Animals , Swine , beta-Crystallins , Phospholipids
4.
J Vis Exp ; (190)2022 12 02.
Article En | MEDLINE | ID: mdl-36533832

An atomic force microscope (AFM) fundamentally measures the interaction between a nanoscale AFM probe tip and the sample surface. If the force applied by the probe tip and its contact area with the sample can be quantified, it is possible to determine the nanoscale mechanical properties (e.g., elastic or Young's modulus) of the surface being probed. A detailed procedure for performing quantitative AFM cantilever-based nanoindentation experiments is provided here, with representative examples of how the technique can be applied to determine the elastic moduli of a wide variety of sample types, ranging from kPa to GPa. These include live mesenchymal stem cells (MSCs) and nuclei in physiological buffer, resin-embedded dehydrated loblolly pine cross-sections, and Bakken shales of varying composition. Additionally, AFM cantilever-based nanoindentation is used to probe the rupture strength (i.e., breakthrough force) of phospholipid bilayers. Important practical considerations such as method choice and development, probe selection and calibration, region of interest identification, sample heterogeneity, feature size and aspect ratio, tip wear, surface roughness, and data analysis and measurement statistics are discussed to aid proper implementation of the technique. Finally, co-localization of AFM-derived nanomechanical maps with electron microscopy techniques that provide additional information regarding elemental composition is demonstrated.


Mechanical Phenomena , Mesenchymal Stem Cells , Microscopy, Atomic Force/methods , Elastic Modulus
5.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article En | MEDLINE | ID: mdl-36232595

Several studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens. Compared to CMs, NMs have a higher percentage of membrane surface occupied by α-crystallin and binding affinity, correlating with less mobility and more order below and on the surface of NMs. α-Crystallin binding to CM and NM decreases mobility with no significant change in order and hydrophobicity below and on the surface of membranes. Our results suggest that α-crystallin mainly binds on the surface of bovine CM and NM and such surface binding of α-crystallin to membranes in clear and young lenses may play a beneficial role in membrane stability. However, with decreased cholesterol content within the CM, which mimics the decreased cholesterol content in the cataractous lens membrane, α-crystallin binding increases the hydrophobicity below the membrane surface, indicating that α-crystallin binding forms a hydrophobic barrier for the passage of polar molecules, supporting the barrier hypothesis in developing cataracts.


Cataract , Lens, Crystalline , alpha-Crystallins , Animals , Cataract/metabolism , Cattle , Cholesterol/metabolism , Lens, Crystalline/metabolism , Nuclear Envelope/metabolism
6.
Exp Eye Res ; 220: 109131, 2022 07.
Article En | MEDLINE | ID: mdl-35636489

Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.


Lens, Crystalline , Lipid Bilayers , Animals , Cell Membrane/metabolism , Cholesterol/metabolism , Elasticity , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Swine
7.
Membranes (Basel) ; 12(5)2022 Apr 23.
Article En | MEDLINE | ID: mdl-35629781

α-crystallin-membrane association increases with age and cataracts, with the primary association site of α-crystallin being phospholipids. However, it is unclear if phospholipids' acyl chain length and degree of unsaturation influence α-crystallin association. We used the electron paramagnetic resonance approach to investigate the association of α-crystallin with phosphatidylcholine (PC) membranes of different acyl chain lengths and degrees of unsaturation and with and without cholesterol (Chol). The association constant (Ka) of α-crystallin follows the trends, i.e., Ka (14:0−14:0 PC) > Ka (18:0−18:1 PC) > Ka (18:1−18:1 PC) ≈ Ka (16:0−20:4 PC) where the presence of Chol decreases Ka for all membranes. With an increase in α-crystallin concentration, the saturated and monounsaturated membranes rapidly become more immobilized near the headgroup regions than the polyunsaturated membranes. Our results directly correlate the mobility and order near the headgroup regions of the membrane with the Ka, with the less mobile and more ordered membrane having substantially higher Ka. Furthermore, our results show that the hydrophobicity near the headgroup regions of the membrane increases with the α-crystallin association, indicating that the α-crystallin-membrane association forms the hydrophobic barrier to the transport of polar and ionic molecules, supporting the barrier hypothesis in cataract development.

8.
Membranes (Basel) ; 12(5)2022 May 14.
Article En | MEDLINE | ID: mdl-35629848

The lens of the eye loses elasticity with age, while α-crystallin association with the lens membrane increases with age. It is unclear whether there is any correlation between α-crystallin association with the lens membrane and loss in lens elasticity. This research investigated α-crystallin membrane association using atomic force microscopy (AFM) for the first time to study topographical images and mechanical properties (breakthrough force and membrane area compressibility modulus (KA), as measures of elasticity) of the membrane. α-Crystallin extracted from the bovine lens cortex was incubated with a supported lipid membrane (SLM) prepared on a flat mica surface. The AFM images showed the time-dependent interaction of α-crystallin with the SLM. Force spectroscopy revealed the presence of breakthrough events in the force curves obtained in the membrane regions where no α-crystallin was associated, which suggests that the membrane's elasticity was maintained. The force curves in the α-crystallin submerged region and the close vicinity of the α-crystallin associated region in the membrane showed no breakthrough event within the defined peak force threshold, indicating loss of membrane elasticity. Our results showed that the association of α-crystallin with the membrane deteriorates membrane elasticity, providing new insights into understanding the molecular basis of lens hardening and presbyopia.

9.
Curr Eye Res ; 47(6): 843-853, 2022 06.
Article En | MEDLINE | ID: mdl-35179407

PURPOSE: This research aims to probe the interaction of α-crystallin with a model of human, porcine, and mouse lens-lipid membranes. METHODS: Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes with 0-60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin association with these membranes were investigated using the electron paramagnetic resonance spin-labeling approach. RESULTS: With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied (MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these membranes. The different MMSO and Ka for different model lens-lipid membranes with different rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity near the surface of these membranes suggested that the lipid composition also modulates α-crystallin association with membranes. Despite different lipid compositions, complete inhibition of α-crystallin association with model lens-lipid membranes was observed at saturating Chol content forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of these membranes. The decreased mobility parameter with increased α-crystallin concentration suggested that membranes near the surface became less mobile due to α-crystallin association. The decreased mobility parameter and increased maximum splitting with increased Chol content suggested that membranes became less mobile and more ordered near the surface with increased Chol content. CONCLUSIONS: This study suggested that the interaction of α-crystallin with model lens-lipid membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-crystallin association with lens membrane, likely increase α-crystallin concentration in lens cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens cytoplasm homeostasis.


Lens, Crystalline , alpha-Crystallins , Animals , Cholesterol/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Mice , Swine
10.
Membranes (Basel) ; 11(6)2021 Jun 15.
Article En | MEDLINE | ID: mdl-34203836

α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.

11.
Biochim Biophys Acta Biomembr ; 1863(8): 183625, 2021 08 01.
Article En | MEDLINE | ID: mdl-33891910

Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.


Cell Membrane/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Cell Membrane/genetics , Cell Membrane/ultrastructure , Cholesterol/metabolism , Humans , Lens, Crystalline/chemistry , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Phosphatidylcholines/chemistry , Phosphatidylcholines/genetics , Phospholipids/genetics , Protein Domains/genetics
12.
Exp Eye Res ; 206: 108544, 2021 05.
Article En | MEDLINE | ID: mdl-33744256

The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens's fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles (SUVs) of PC, SM*, and PS with 0, 23, 33, 50, and 60 mol% Chol and PE* with 0, 9, and 33 mol% Chol were prepared using the rapid solvent exchange method followed by probe-tip sonication. The 1 mol% CSL spin-labels used during SUVs preparation distribute uniformly within the Chol/PL membrane, enabling the investigation of Chol and CBDs' role on α-crystallin binding to the membrane. For PC, SM*, and PS membranes, the binding affinity (Ka) and the maximum percentage of membrane surface occupied (MMSO) by α-crystallin decreased with an increase in Chol concentration. The Ka and MMSO became zero at 50 mol% Chol for PC and 60 mol% Chol for SM* membranes, representing that complete inhibition of α-crystallin binding was possible before the formation of CBDs within the PC membrane but only after the formation of CBDs within the SM* membrane. The Ka and MMSO did not reach zero even at 60 mol% Chol in the PS membrane, representing CBDs at this Chol concentration were not sufficient for complete inhibition of α-crystallin binding to the PS membrane. Both the Ka and MMSO were zero at 0, 9, and 33 mol% Chol in the PE* membrane, representing no binding of α-crystallin to the PE* membrane with and without Chol. The mobility parameter profiles decreased with an increase in α-crystallin binding to the membranes; however, the decrease was more pronounced for the membrane with lower Chol concentration. These results imply that the membranes become more immobilized near the headgroup regions with an increase in α-crystallin binding; however, the Chol antagonizes the capacity of α-crystallin to decrease the mobility near the headgroup regions of the membranes. The maximum splitting profiles remained the same with an increase in α-crystallin concentration, but there was an increase in the maximum splitting with an increase in the Chol concentration in the membranes. It implies that membrane order near the headgroup regions does not change with an increase in α-crystallin concentration but increases with an increase in Chol concentration in the membrane. Based on our data, we hypothesize that the Chol and CBDs decrease hydrophobicity (increase polarity) near the membrane surface, inhibiting the hydrophobic binding of α-crystallin to the membranes. Thus, our data suggest that Chol and CBDs play a positive physiological role by preventing α-crystallin binding to lens membranes and possibly protecting against cataract formation and progression.


Cataract/metabolism , Cholesterol/metabolism , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Phosphatidylethanolamines/metabolism , Phospholipids/metabolism , alpha-Crystallins/metabolism , Cataract/pathology , Cell Membrane/metabolism , Electron Spin Resonance Spectroscopy/methods , Humans , Hydrophobic and Hydrophilic Interactions , Lens, Crystalline/pathology , Spin Labels
13.
Curr Eye Res ; 46(2): 185-194, 2021 02.
Article En | MEDLINE | ID: mdl-32564617

Purpose/Aim: The amount of membrane-bound α-crystallin increases significantly with age and cataract formation, accompanied by a corresponding decline in the level of α-crystallin in the lens cytoplasm. The purpose of this research is to evaluate the binding affinity of α-crystallin to the phospholipid membranes as well as the physical properties of the membranes after α-crystallin binding. Materials and Methods: The continuous wave and saturation recovery electron paramagnetic resonance (EPR) methods were used to obtain the information about the binding affinity and the physical properties of the membrane. In this approach, the cholesterol analog spin label CSL was incorporated in the membrane and the binding of α-crystallin to the membrane was monitored by this spin label. Small uni-lamellar vesicles were prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with 1% of CSL. The measured membrane properties included the mobility parameter, fluidity, and the oxygen transport parameter. Results: The binding affinity (Ka ) of α-crystallin with the POPC membrane was estimated to be 4.9 ± 2.4 µM-1. The profiles of mobility parameter showed that mobility parameter decreased with an increase in the binding of α-crystallin. The profiles of spin-lattice relaxation rate showed that the spin-lattice relaxation rate decreased with an increase in binding. These results show that the binding of α-crystallin makes the membrane more immobilized near the head group region of the phospholipids. Furthermore, the profiles of the oxygen transport parameter indicated that the oxygen transport parameter decreased with an increase of binding, indicating the binding of α-crystallin forms a barrier for the passage of non-polar molecules which supports the barrier hypothesis. Conclusions: The binding of α-crystallin to the membrane alters the physical properties of the membranes, and this plays a significant role in modulating the integrity of the membranes. EPR techniques are useful in studying α-crystallin membrane interactions.


Cataract/metabolism , Lens, Crystalline/chemistry , Phospholipids/metabolism , alpha-Crystallins/metabolism , Electron Spin Resonance Spectroscopy/methods , Humans , Lens, Crystalline/metabolism , Spin Labels
14.
Exp Eye Res ; 202: 108337, 2021 01.
Article En | MEDLINE | ID: mdl-33127344

It is well-studied that the significant factor in cataract formation is the association of α-crystallin, a major eye lens protein, with the fiber cell plasma membrane of the eye lens. The fiber cell plasma membrane of the eye lens consists of four major phospholipids (PLs), i.e., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and sphingomyelin (SM). Despite several attempts to study the interaction of α-crystallin with PLs of the eye lens membrane, the role of individual PL for the binding with α-crystallin is still unclear. We recently developed the electron paramagnetic resonance (EPR) spin-labeling method to study the binding of α-crystallin to the PC membrane (Mainali et al., 2020a). Here, we use the recently developed EPR method to explicitly measure the binding affinity (Ka) of α-crystallin to the individual (PE*, PS, and SM) and two-component mixtures (SM/PE, SM/PS, and SM/PC in 70:30 and 50:50 mol%) of PL membranes as well as the physical properties (mobility parameter and maximum splitting) of these membranes upon binding with α-crystallin. One of the key findings of this study was that the Ka of α-crystallin binding to individual PL membranes followed the trends: Ka(PC) > Ka(SM) > Ka(PS) > Ka(PE*), indicating PE* inhibits binding the most whereas PC inhibits binding the least. Also, the Ka of α-crystallin binding to two-component mixtures of PL membranes followed the trends: Ka(SM/PE) > Ka(SM/PS) > Ka(SM/PC), indicating SM/PC inhibits binding the most whereas SM/PE inhibits binding the least. Except for the PE* membrane, for which there was no binding of α-crystallin, the mobility parameter for all other membranes decreased with an increase in α-crystallin concentration. It represents that the membranes become more immobilized near the headgroup regions of the PLs when more and more α-crystallin binds to them. The maximum splitting increased only for the SM and the SM/PE (70:30 mol%) membranes, with an increase in the binding of α-crystallin. It represents that the PL headgroup regions of these membranes become more ordered after binding of α-crystallin to these membranes. Our results showed that α-crystallin binds to PL membranes in a saturable manner. Also, our data suggest that the binding of α-crystallin to PL membranes likely occurs through hydrophobic interaction between α-crystallin and the hydrophobic fatty acid core of the membranes, and such interaction is modulated by the PL headgroup's size and charge, hydrogen bonding between headgroups, and PL curvature. Thus, this study provides an in-depth understanding of α-crystallin interaction with the PL membranes made of individual and two-component mixtures of the four major PLs of the eye lens membranes.


Cell Membrane/metabolism , Lens, Crystalline/metabolism , Electron Spin Resonance Spectroscopy , Humans , Phospholipids/metabolism , Protein Binding , alpha-Crystallins/metabolism
15.
Nucleic Acids Res ; 48(13): 7018-7026, 2020 07 27.
Article En | MEDLINE | ID: mdl-32542319

Probing the role of surface structure in electrostatic interactions, we report the first observation of sequence-dependent dsDNA condensation by divalent alkaline earth metal cations. Disparate behaviors were found between two repeating sequences with 100% AT content, a poly(A)-poly(T) duplex (AA-TT) and a poly(AT)-poly(TA) duplex (AT-TA). While AT-TA exhibits non-distinguishable behaviors from random-sequence genomic DNA, AA-TT condenses in all alkaline earth metal ions. We characterized these interactions experimentally and investigated the underlying principles using computer simulations. Both experiments and simulations demonstrate that AA-TT condensation is driven by non-specific ion-DNA interactions. Detailed analyses reveal sequence-enhanced major groove binding (SEGB) of point-charged alkali ions as the major difference between AA-TT and AT-TA, which originates from the continuous and close stacking of nucleobase partial charges. These SEGB cations elicit attraction via spatial juxtaposition with the phosphate backbone of neighboring helices, resulting in an azimuthal angular shift between apposing helices. Our study thus presents a distinct mechanism in which, sequence-directed surface motifs act with cations non-specifically to enact sequence-dependent behaviors. This physical insight allows a renewed understanding of the role of repeating sequences in genome organization and regulation and offers a facile approach for DNA technology to control the assembly process of nanostructures.


Cations, Divalent/chemistry , DNA/chemistry , Nucleic Acid Conformation , Animals , Biophysical Phenomena , Molecular Dynamics Simulation , Salmon , Static Electricity
16.
Biophys J ; 118(12): 3019-3025, 2020 06 16.
Article En | MEDLINE | ID: mdl-32470322

Quantitative understanding of biomolecular electrostatics, particularly involving multivalent ions and highly charged surfaces, remains lacking. Ion-modulated interactions between nucleic acids provide a model system in which electrostatics plays a dominant role. Using ordered DNA arrays neutralized by spherical cobalt3+ hexammine and Mg2+ ions, we investigate how the interstitial ions modulate DNA-DNA interactions. Using methods of ion counting, osmotic stress, and x-ray diffraction, we systematically determine thermodynamic quantities, including ion chemical potentials, ion partition, DNA osmotic pressure and force, and DNA-DNA spacing. Analyses of the multidimensional data provide quantitative insights into their interdependencies. The key finding of this study is that DNA-DNA forces are observed to linearly depend on the partition of interstitial ions, suggesting the dominant role of ion-DNA coupling. Further implications are discussed in light of physical theories of electrostatic interactions and like-charge attraction.


DNA , Nucleic Acids , Ions , Static Electricity , Thermodynamics
17.
ACS Appl Mater Interfaces ; 12(2): 2067-2075, 2020 Jan 15.
Article En | MEDLINE | ID: mdl-31859479

In the current study, we examined the potential for neural stem cell (NSCs) proliferation on novel aligned touch-spun polycaprolactone (PCL) nanofibers. Electrospun PCL nanofibers with similar diameter and alignment were used as a control. Confocal microscopy images showed that NSCs grew and differentiated all over the scaffolds up to 8 days. Neurite quantification analysis revealed that the NSCs cultured on the touch-spun fibers with incorporated bovine serum albumin promoted the expression of neuron-specific class III ß-tubulin after 8 days. More importantly, NSCs grown on the aligned touch-spun PCL fibers exhibited a bipolar elongation along the direction of the fiber, while NSCs cultured on the aligned electrospun PCL fibers expressed a multipolar elongation. The structural characteristics of the PCL nanofibers analyzed by X-ray diffraction indicated that the degree of crystallinity and elastic modulus of the touch-spun fiber are significantly higher than those of electrospun fibers. These findings indicate that the aligned and stiff touch-spun nanofibrous scaffolds show considerable potential for nerve injury repair.


Nanofibers/chemistry , Nerve Regeneration/physiology , Touch , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Humans , Nanofibers/ultrastructure , Neural Stem Cells/cytology , Polyesters/chemistry , Surface Properties
18.
Mater Sci Eng C Mater Biol Appl ; 99: 582-590, 2019 Jun.
Article En | MEDLINE | ID: mdl-30889733

Bioelectronic devices enable efficient and effective communication between medical devices and human tissue in order to directly treat patients with various neurological disorders. Due to the mechanical similarity to human tissue, hydrogel-based electronic devices are considered to be promising for biological signal recording and stimulation of living tissues. Here, we report the first three-dimensionally (3D) printable conductive hydrogel that can be photocrosslinked while retaining high electrical conductivity. In addition, we prepared dorsal root ganglion (DRG) cell-encapsulated gelatin methacryloyl (GelMA) hydrogels which were integrated with the 3D printed conductive structure and evaluated for efficiency neural differentiation under electrical stimulation (ES). For enhanced electrical conductivity, a poly(3,4-ethylenedioxythiophene) (PEDOT): polystyrene sulfonate (PSS) aqueous solution was freeze-dried and mixed with polyethylene glycol diacrylate (PEGDA) as the photocurable polymer base. Next, the conductive hydrogel was patterned on the substrate by using a table-top stereolithography (SLA) 3D printer. The fabricated hydrogel was characterized for electrochemical conductivity. After printing with the PEDOT:PSS conductive solution, the patterned hydrogel exhibited decreased printing diameters with increasing of PEDOT:PSS concentration. Also, the resultant conductive hydrogel had significantly increased electrochemical properties with increasing PEDOT:PSS concentration. The 3D printed conductive hydrogel provides excellent structural support to systematically transfer the ES toward encapsulated DRG cells for enhanced neuronal differentiation. The results from this study indicate that the conductive hydrogel can be useful as a 3D printing material for electrical applications.


Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Electric Conductivity , Hydrogels/pharmacology , Nerve Tissue/physiology , Polymers/pharmacology , Polystyrenes/pharmacology , Printing, Three-Dimensional , Tissue Engineering/methods , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Crystallization , Electric Stimulation , Electrochemical Techniques , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Hydrogels/chemistry , Light , Nerve Tissue/drug effects , Polymers/chemistry , Polystyrenes/chemistry , Porosity
...