Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731442

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Anticonvulsants , Pentylenetetrazole , Receptors, GABA-A , Seizures , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Animals , Mice , Seizures/drug therapy , Seizures/chemically induced , Receptors, GABA-A/metabolism , Quinazolinones/pharmacology , Quinazolinones/chemistry , Quinazolinones/chemical synthesis , Molecular Docking Simulation , Male , Structure-Activity Relationship , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Molecular Structure , Allosteric Site
2.
Pharmaceutics ; 16(1)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38258100

Antimicrobial resistance is an increasing problem for global public health. One of the strategies to combat this issue is the synthesis of novel antimicrobials through rational drug design based on extensive structure-activity relationship studies. The thiazole nucleus is a prominent feature in the structure of many authorized antimicrobials, being clubbed with different heterocycles. The purpose of this review is to study the structure-activity relationship in antimicrobial thiazoles clubbed with various heterocycles, as reported in the literature between 2017 and 2023, in order to offer an overview of the last years in terms of antimicrobial research and provide a helpful instrument for future research in the field.

3.
Antibiotics (Basel) ; 12(11)2023 Nov 20.
Article En | MEDLINE | ID: mdl-37998846

This study aimed to investigate the polyphenolic composition and antioxidant and antimicrobial potential of six Romanian Stachys species: S. officinalis, S. germanica, S. byzantina, S. sylvatica, S. palustris, and S. recta. The LC-MS/MS method was used to analyze the polyphenolic profile, while the phenolic contents were spectrophotometrically determined. The antioxidant activity was evaluated using the following methods: DPPH, FRAP, nitrite-induced autooxidation of hemoglobin, inhibition of cytochrome c-catalyzed lipid peroxidation, and electron paramagnetic resonance spectroscopy. The in vitro antimicrobial properties were assessed using agar-well diffusion, broth microdilution, and antibiofilm assays. Fifteen polyphenols were identified using LC-MS and chlorogenic acid was the major component in all the samples (1131.8-6761.4 µg/g). S. germanica, S. palustris, and S. byzantina extracts each displayed an intense antiradical action in relation to high contents of TPC (6.40 mg GAE/mL), flavonoids (3.90 mg RE/mL), and caffeic acid derivatives (0.89 mg CAE/mL). In vitro antimicrobial and antibiofilm properties were exhibited towards Candida albicans, Gram-positive and Gram-negative strains, with the most intense efficacy recorded for S. germanica and S. byzantina when tested against S. aureus. These results highlighted Stachys extracts as rich sources of bioactive compounds with promising antioxidant and antimicrobial efficacies and important perspectives for developing phytopharmaceuticals.

4.
Molecules ; 27(8)2022 Apr 18.
Article En | MEDLINE | ID: mdl-35458796

Considering the important damage caused by the reactive oxygen (ROS) and nitrogen (RNS) species in the human organism, the need for new therapeutic agents, with superior efficacy to the known natural and synthetic antioxidants, is crucial. Quinazolin-4-ones are known for their wide range of biological activities, and phenolic compounds display an important antioxidant effect. Linking the two active pharmacophores may lead to an increase of the antioxidant activity. Therefore, we synthesized four series of new hybrid molecules bearing the quinazolin-4-one and phenol scaffolds. Their antioxidant potential was evaluated in vitro, considering different possible mechanisms of action: hydrogen atom transfer, ability to donate electrons and metal ions chelation. Theoretical quantum and thermodynamical calculations were also performed. Some compounds, especially the ortho diphenolic ones, exerted a stronger antioxidant effect than ascorbic acid and Trolox.


Antioxidants , Phenols , Antioxidants/pharmacology , Ascorbic Acid , Humans , Structure-Activity Relationship
5.
Molecules ; 24(19)2019 Sep 21.
Article En | MEDLINE | ID: mdl-31546673

In the context of there being a limited number of clinically approved drugs for the treatment of Candida sp.-based infections, along with the rapid development of resistance to the existing antifungals, two novel series of 4-phenyl-1,3-thiazole and 2-hydrazinyl-4-phenyl-1,3-thiazole derivatives were synthesized and tested in vitro for their anti-Candida potential. Two compounds (7a and 7e) showed promising inhibitory activity against the pathogenic C. albicans strain, exhibiting substantially lower MIC values (7.81 µg/mL and 3.9 µg/mL, respectively) as compared with the reference drug fluconazole (15.62 µg/mL). Their anti-Candida activity is also supported by molecular docking studies, using the fungal lanosterol C14α-demethylase as the target enzyme. The interaction of the most biologically active synthesized compound 7e with bovine serum albumin was investigated through fluorescence spectroscopy, and the obtained data suggested that this molecule might efficiently bind carrier proteins in vivo in order to reach the target site.


Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida/drug effects , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Structure-Activity Relationship
6.
Medicina (Kaunas) ; 55(4)2019 Mar 31.
Article En | MEDLINE | ID: mdl-30935124

Background and objectives: Cancer represents the miscommunication between and within the body cells. The mutations of the oncogenes encoding the MAPK pathways play an important role in the development of tumoral diseases. The mutations of KRAS and BRAF oncogenes are involved in colorectal cancer and melanoma, while the NRAS mutations are associated with melanoma. Thiazolidine-2,4-dione is a versatile scaffold in medicinal chemistry and a useful tool in the development of new antitumoral compounds. The aim of our study was to predict the pharmacokinetic/pharmacodynamic properties, the drug-likeness and lead-likeness of two series of synthetic 5-arylidene(chromenyl-methylene)-thiazolidinediones, the molecular docking on the oncoproteins K-Ras, N-Ras and B-Raf, and to investigate the cytotoxicity of the compounds, in order to select the best structural profile for potential anticancer agents. Materials and Methods: In our paper we studied the cytotoxicity of two series of thiazolidine-2,4-dione derivatives, their ADME-Tox properties and the molecular docking on a mutant protein of K-Ras, two isoforms of N-Ras and an isoform of B-Raf with 16 mutations. Results: The heterocyclic compounds strongly interact with K-Ras and N-Ras right after their posttranslational processing and/or compete with GDP for the nucleotide-binding site of the two GTPases. They are less active against the GDP-bound states of the two targets. All derivatives have a similar binding pattern in the active site of B-Raf. Conclusions: The data obtained encourage the further investigation of the 5-arylidene(chromenyl-methylene)-thiazolidinediones as potential new agents against the oncoproteins K-Ras, N-Ras and B-Raf.


Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Melanoma/drug therapy , Oncogene Protein p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Skin Neoplasms/drug therapy , Thiazolidinediones/chemistry , Thiazolidinediones/therapeutic use , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Discovery , GTP Phosphohydrolases/chemistry , Guanosine Diphosphate/chemistry , Humans , Melanoma, Experimental/drug therapy , Mice , Molecular Docking Simulation/methods , Mutation , Oncogene Protein p21(ras)/genetics , Protein Binding , Protein Structure, Secondary , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Thiazolidinediones/chemical synthesis
7.
Molecules ; 24(1)2019 Jan 06.
Article En | MEDLINE | ID: mdl-30621322

In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the binding poses towards lanosterol 14α-demethylase. An in silico ADMET analysis showed that the compounds possess drug-like properties and represent a biologically active framework that should be further optimized as potential hits.


Antifungal Agents/pharmacology , Candida/drug effects , Hydrazones/pharmacology , Antifungal Agents/chemical synthesis , Drug Design , Fluconazole/pharmacology , Hydrazones/chemical synthesis , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
8.
BMC Complement Altern Med ; 18(1): 226, 2018 Jul 27.
Article En | MEDLINE | ID: mdl-30053845

BACKGROUND: Although Galanthus nivalis L. (snowdrop) is known for the galanthamine content, used in the treatment of Alzheimer disease, the polyphenolic compounds of Amaryllidaceae species are less studied. Proper understanding of the polyphenolics in these extracts and of their antioxidant and antimicrobial properties may allow a reconsideration of their medicinal uses. METHODS: The polyphenolic content of four selected Amaryllidaceae species harvested from Romania (Galanthus nivalis L., Narcissus pseudonarcissus L., N. poeticus L. and Leucojum vernum L.) was determined by spectrophotometric methods; the identification of phenolic compounds was performed by a HPLC-MS method, in order to establish their polyphenolic fingerprints. For the evaluation of the antioxidant potential the following methods were employed: DPPH radical scavenging, FRAP, hemoglobin ascorbate peroxidase activity inhibition (HAPX), inhibition of lipid peroxidation catalyzed by cytochrome c, and electron paramagnetic resonance (EPR) spectroscopy assays. Antimicrobial activity was assessed using the disc diffusion method. RESULTS: Qualitative and quantitative analyses highlight important amount of polyphenols (over 15 mg/g); the main identified compounds are chlorogenic and p-coumaric acids in all species. Only G. nivalis shows antioxidant activity by all the used methods. G. nivalis and L. vernum strongly inhibits the growth of S. aureus, while N. poeticus shows a very good antifungal activity. CONCLUSIONS: The results of this study provide a new approach to the properties and therapeutic uses of some Romanian widespread Amaryllidaceae species that could be considered sources of developing new medicinal products with anti anti-staphylococcal and antifungal activity.


Amaryllidaceae/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Plant Components, Aerial/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Bacteria/drug effects , Biphenyl Compounds , Lipid Peroxidation/drug effects , Picrates , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Romania
9.
Biomed Chromatogr ; 32(7): e4221, 2018 Jul.
Article En | MEDLINE | ID: mdl-29485694

The chromatographic behavior of a series of thiazolyl-1,3,4-oxadiazoles with antifungal activity was studied by reverse-phase thin-layer chromatography (RP-TLC). The lipophilicity parameters derived from RP-TLC were correlated with the data derived from liquid-chromatography mass-spectrometry. Good linear relationships were observed between the chromatographic lipophilicity parameters and the theoretical lipophilicity descriptors (logP) generated by various computer software and internet modules. Principal component analysis, applied on the experimental chromatographic lipophilicity indices and the theoretically calculated logP, enabled us to obtain a lipophilicity chart for better vizualization of the similarities and differences of the investigated compounds, which were grouped by k-means clustering in two congeneric classes.


Antifungal Agents/chemistry , Oxadiazoles/chemistry , Thiazoles/chemistry , Antifungal Agents/analysis , Chromatography, Reverse-Phase/methods , Chromatography, Thin Layer/methods , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Oxadiazoles/analysis , Principal Component Analysis , Thiazoles/analysis
10.
Molecules ; 21(11)2016 Nov 22.
Article En | MEDLINE | ID: mdl-27879678

In the context of the dangerous phenomenon of fungal resistance to the available therapies, we present here the chemical synthesis of a new series of thiazolyl-triazole Schiff bases B1-B15, which were in vitro assessed for their anti-Candida potential. Compound B10 was found to be more potent against Candida spp. when compared with the reference drugs Fluconazole and Ketoconazole. A docking study of the newly synthesized Schiff bases was performed, and results showed good binding affinity in the active site of co-crystallized Itraconazole-lanosterol 14α-demethylase isolated from Saccharomyces cerevisiae. An in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) study was done in order to predict some pharmacokinetic and pharmacotoxicological properties. The Schiff bases showed good drug-like properties. The results of in vitro anti-Candida activity, a docking study and ADMET prediction revealed that the newly synthesized compounds have potential anti-Candida activity and evidenced the most active derivative, B10, which can be further optimized as a lead compound.


Candida/drug effects , Schiff Bases/chemical synthesis , Sterol 14-Demethylase/metabolism , Triazoles/chemical synthesis , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida/metabolism , Catalytic Domain , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Schiff Bases/chemistry , Schiff Bases/pharmacology , Sterol 14-Demethylase/chemistry , Triazoles/chemistry , Triazoles/pharmacology
11.
Molecules ; 20(9): 17325-38, 2015 Sep 18.
Article En | MEDLINE | ID: mdl-26393564

New series of hydrazones 5-18 were synthesized, in good yields, by reacting 4-methyl-2-(4-(trifluoromethyl)phenyl)thiazole-5-carbohydrazide with differently substituted benzaldehyde. The resulting compounds were characterized via elemental analysis, physico-chemical and spectral data. An antimicrobial screening was done, using Gram (+), Gram (-) bacteria and one fungal strain. Tested molecules displayed moderate-to-good growth inhibition activity. 2,2-Diphenyl-1-picrylhydrazide assay was used to test the antioxidant properties of the compounds. Monohydroxy (14-16), para-fluorine (13) and 2,4-dichlorine (17) derivatives exhibited better free-radical scavenging ability than the other investigated molecules.


Anti-Infective Agents/chemical synthesis , Antioxidants/chemical synthesis , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Fungi/drug effects , Hydrazones/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
...