Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 260: 121952, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38906083

ABSTRACT

Antimicrobial resistance (AMR) is a global public health threat, and the environment has been identified as an important reservoir for resistant microorganisms and genes. Storm overflows (SOs) discharge wastewater and stormwater, and are found throughout many wastewater networks. While there are no data currently showing the impact of SOs on the environment with respect to AMR in the UK, there is a small but growing body of evidence globally highlighting the potential role of SOs on environmental AMR. This review aims to provide an overview of the current state of SOs, describe global data investigating the impact of SOs on environmental AMR, and discuss the implications of SOs regarding AMR and human health. In addition, the complexities of studying the effects of SOs are discussed and a set of priority research questions and policy interventions to tackle a potentially emerging threat to public health are presented.

2.
Environ Toxicol Chem ; 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36416260

ABSTRACT

The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2022;00:1-14. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Water Res ; 207: 117813, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34785409

ABSTRACT

We investigated the seasonal prevalence of seven enteric viruses in groundwater-derived public water sources distributed across the dominant aquifers of England. Sampling targeted four periods in the hydrological cycle with typically varying microbial risks, as indicated using a decade of Escherichia coli prevalence data. Viruses were concentrated onsite by filtration of raw groundwater, and extracted nucleic acid (NA) was amplified by qPCR or RT-qPCR. Seven out of eight sources, all aquifers, and 31% of samples were positive for viral NA. The most frequently detected viral NA targets were Hepatitis A virus (17% samples, 63% sites), norovirus GI (14% samples, 38% sites), and Hepatitis E virus (7% samples, 25% sites). Viral NA presence was episodic, being most prevalent and at its highest concentration during November and January, the main groundwater recharge season, with 89% of all positive detects occurring during a rising water table. Seasonal norovirus NA detections matched its seasonal incidence within the population. Viral NA is arriving with groundwater recharge, as opposed to persisting for long-periods within the saturated zone. Neither total coliforms nor E. coli were significant predictors of viral NA presence-absence, and there was limited co-occurrence between viruses. Nevertheless, a source with an absence of E. coli in regularly collected historical data is unlikely to be at risk of viral contamination. To manage potential groundwater viral contamination via risk assessment, larger scale studies are required to understand key risk factors, with the evidence here suggesting viral NA is widespread across a range of typical microbial risk settings.


Subject(s)
Groundwater , Viruses , Escherichia coli , Viruses/genetics , Water , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...