Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Geroscience ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879847

ABSTRACT

Recently, DNA methylation clocks have been proven to be precise age predictors, and the application of these clocks in cancer tissue has revealed a global age acceleration in a majority of cancer subtypes when compared to normal tissue from the same individual. The polycomb repressor complex 2 plays a pivotal role in the aging process, and its targets have been shown to be enriched in CpG sites that gain methylation with age. This complex is further regulated by the chromatin remodeling complex SWItch/Sucrose Non-Fermentable and its core subunit, notably the tumor suppressor gene SMARCB1, which under physiological conditions inhibits the activity of the polycomb repressor complex 2. Hence, the loss of function of core members of the SWItch/sucrose non-fermentable complex, such as the tumor suppressor gene SMARCB1, results in increased activity of polycomb repressor complex 2 and interferes with the aging process. SMARCB1-deficient neoplasms represent a family of rare tumors, including amongst others malignant rhabdoid tumors, atypical teratoid and rhabdoid tumors, and epithelioid sarcomas. As aging pathways have recently been proposed as therapeutic targets for various cancer types, these tumors represent candidates for testing such treatments. Here, by deriving epigenetic age scores from more than 1000 tumor samples, we identified epigenetic age acceleration as a hallmark feature of epithelioid sarcoma. This observation highlights the potential of targeting aging pathways as an innovative treatment approach for patients with epithelioid sarcoma.

2.
J Pathol ; 260(4): 368-375, 2023 08.
Article in English | MEDLINE | ID: mdl-37316954

ABSTRACT

Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Rhabdoid Tumor , Sarcoma , Humans , DNA-Binding Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Rhabdoid Tumor/genetics , Rhabdoid Tumor/therapy , Rhabdoid Tumor/metabolism , Immunohistochemistry , SMARCB1 Protein/genetics , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/metabolism
3.
J Pathol ; 259(2): 119-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36426824

ABSTRACT

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However, previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1 rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated 15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The overall concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illustrate that FOSL1 and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Fibroma, Desmoplastic , Fibroma , Soft Tissue Neoplasms , Humans , Fibroma, Desmoplastic/diagnosis , Fibroma, Desmoplastic/genetics , Fibroma, Desmoplastic/pathology , Fibroma/genetics , Gene Rearrangement , In Situ Hybridization , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Ubiquitin Thiolesterase/genetics
4.
Cell Death Differ ; 29(12): 2459-2471, 2022 12.
Article in English | MEDLINE | ID: mdl-36138226

ABSTRACT

Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFß-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.


Subject(s)
Bone Neoplasms , Giant Cell Tumor of Bone , Humans , Giant Cell Tumor of Bone/genetics , Giant Cell Tumor of Bone/drug therapy , Giant Cell Tumor of Bone/pathology , Histones/genetics , Histones/metabolism , Denosumab/metabolism , Denosumab/therapeutic use , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Osteoclasts/metabolism , Bone Remodeling/genetics , Tumor Microenvironment , Calcium-Binding Proteins/metabolism
5.
Genome Med ; 14(1): 99, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042521

ABSTRACT

BACKGROUND: Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS: In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS: IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS: Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Adult , Aged , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Models, Genetic , Mutation , Prognosis
6.
Mod Pathol ; 35(6): 767-776, 2022 06.
Article in English | MEDLINE | ID: mdl-34969957

ABSTRACT

Superficial CD34-positive fibroblastic tumor (SCD34FT) is a recently recognized soft tissue tumor that is considered to be of borderline malignancy. The pathogenesis of this tumor remains incompletely understood, but it has been suggested that SCD34FT overlaps with tumors showing fusions involving the PRDM10 gene. Previous analyses of PRDM10-rearranged tumors have demonstrated that they have a distinct gene expression profile, resulting in high expression of CADM3 (also known as SynCam3), which can be detected immunohistochemically. Here, we investigated a series (n = 43) of SCD34FT or PRDM10-rearranged tumors and potential mimics (n = 226) with regard to morphological, genetic, and immunohistochemical features. The results show that SCD34FT and PRDM10-rearranged tumor are morphologically indistinguishable; 41 of 43 tumors of both entities are CADM3-positive. Hence, we suggest that they constitute a single entity, preferably referred to as SCD34FT. Expression of CADM3 was only rarely seen in other soft tissue tumors, except in tumors with Schwann cell differentiation. Thus, IHC for CADM3, in combination with the characteristic morphological features, is a valuable adjunct in the diagnosis of SCD34FT.


Subject(s)
Biomarkers, Tumor , Soft Tissue Neoplasms , Biomarkers, Tumor/analysis , DNA-Binding Proteins/genetics , Humans , Soft Tissue Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
7.
Surg Pathol Clin ; 14(4): 619-643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34742484

ABSTRACT

This review provides an overview of the spectrum of tumors showing notochordal differentiation. This spectrum encompasses benign entities that are mostly discovered incidentally on imaging, reported as benign notochordal cell tumor, usually not requiring surgical intervention; slowly growing and histologically low-grade tumors referred to as conventional chordoma but associated with a significant metastatic potential and mortality; and more aggressive disease represented by histologically higher-grade tumors including dedifferentiated chordoma, a high-grade biphasic tumor characterized by a conventional chordoma juxtaposed to a high-grade sarcoma, usually with a spindle or pleomorphic cell morphology, and associated with a poor prognosis and poorly differentiated chordoma.


Subject(s)
Bone Neoplasms , Chordoma , Neoplasms, Germ Cell and Embryonal , Soft Tissue Neoplasms , Cell Differentiation , Chordoma/diagnosis , Humans
8.
Mol Oncol ; 15(12): 3679-3690, 2021 12.
Article in English | MEDLINE | ID: mdl-34528398

ABSTRACT

Chondrosarcoma (CS) is a rare tumour type and the most common primary malignant bone cancer in adults. The prognosis, currently based on tumour grade, imaging and anatomical location, is not reliable, and more objective biomarkers are required. We aimed to determine whether the level of circulating tumour DNA (ctDNA) in the blood of CS patients could be used to predict outcome. In this multi-institutional study, we recruited 145 patients with cartilaginous tumours, of which 41 were excluded. ctDNA levels were assessed in 83 of the remaining 104 patients, whose tumours harboured a hotspot mutation in IDH1/2 or GNAS. ctDNA was detected pre-operatively in 31/83 (37%) and in 12/31 (39%) patients postoperatively. We found that detection of ctDNA was more accurate than pathology for identification of high-grade tumours and was associated with a poor prognosis; ctDNA was never associated with CS grade 1/atypical cartilaginous tumours (ACT) in the long bones, in neoplasms sited in the small bones of the hands and feet or in tumours measuring less than 80 mm. Although the results are promising, they are based on a small number of patients, and therefore, introduction of this blood test into clinical practice as a complementary assay to current standard-of-care protocols would allow the assay to be assessed more stringently and developed for a more personalised approach for the treatment of patients with CS.


Subject(s)
Chondrosarcoma , Circulating Tumor DNA , Adult , Biomarkers, Tumor/genetics , Chondrosarcoma/diagnosis , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Chromogranins/genetics , Circulating Tumor DNA/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Risk Assessment
9.
Bone Joint Res ; 10(7): 388-400, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34235940

ABSTRACT

AIMS: The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. METHODS: We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method. RESULTS: The two groups were matched for patient sex, age (61 and 63 years), time to revision (30 and 41 months), implant size (54 mm and 52 mm), and porosity (72% and 60%) (p > 0.152). There was no difference in visual bony attachment (p = 0.209). Histological analysis showed greater bone ingrowth in 3D-printed implants (p < 0.001), with mean bone attachment of 63% (SD 28%) and 37% (SD 20%), respectively. This was observed for all the outcome measures. CONCLUSION: This was the first study to investigate osseointegration in retrieved 3D-printed acetabular implants. Greater bone ingrowth was found in 3D-printed implants, suggesting that better osseointegration can be achieved. However, the influence of specific surgeon, implant, and patient factors needs to be considered. Cite this article: Bone Joint Res 2021;10(7):388-400.

10.
J Pathol Clin Res ; 7(4): 350-360, 2021 07.
Article in English | MEDLINE | ID: mdl-33949149

ABSTRACT

Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.


Subject(s)
DNA Methylation/genetics , Sarcoma/classification , Biomarkers, Tumor , Bone Neoplasms/classification , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Brain Neoplasms/classification , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Classification , Diagnosis, Differential , Gene Expression Profiling , Genetic Techniques , Humans , Sarcoma/diagnosis , Sarcoma/pathology , Soft Tissue Neoplasms/classification , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology
12.
Skeletal Radiol ; 50(4): 711-721, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32959335

ABSTRACT

OBJECTIVE: To describe the MRI features of paediatric conventional central chondrosarcoma (CC-CS) and correlate with histological grade. MATERIALS AND METHODS: A retrospective review of children/adolescents with histologically confirmed CC-CS. Data collected included age, sex, skeletal location, and histology from needle biopsy or resection, which was classified as atypical cartilaginous tumours/grade 1 CS (ACT/Gd 1 CS), high-grade chondrosarcoma (HGCS), and dedifferentiated chondrosarcoma (DD-CS). MRI studies were reviewed independently by 2 radiologists blinded to the histology grade, who graded the tumours as ACT/Gd 1 CS, HGCS, and DD-CS based on MRI features. RESULTS: The study included 7 males and 10 females with mean age 13.9 years (range 6-18 years). Tumours were located in the femur (n = 6), humerus (n = 3), tibia, ilium, scapula, and ulna (n = 1 each), and the small bones of the hands or feet (n = 4). Final histology grade was ACT/Gd 1 CS in 15 cases and HGCS in 2 (both grade 1 CS with focal transition to grade 2), 15 based on surgical specimens, 1 based on open biopsy, and 1 on needle biopsy alone. Predicted MRI grade for the 2 readers was ACT/Gd 1 CS in 11 cases each and HGCS in 6 cases each, indicating a mismatch between predicted MRI grade and histological grade in 8 (47%) cases (4 cases with one reader mismatch and 4 cases with both). CONCLUSIONS: MRI findings in paediatric CC-CS may be misleading, showing features suggestive of HGCS 7 of 17 (41.2%) of cases. This should be taken into consideration when planning surgical treatment.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Adolescent , Bone Neoplasms/diagnostic imaging , Child , Chondrosarcoma/diagnostic imaging , Female , Humans , Humerus , Magnetic Resonance Imaging , Male , Retrospective Studies
14.
Skeletal Radiol ; 50(2): 445-450, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32710151

ABSTRACT

EWSR1-SMAD3 fibroblastic tumour is a recently described soft tissue lesion. To date, eight cases have been reported, all sited in superficial soft tissue, typically occurring in the hands and feet with a tendency for local recurrence if incompletely excised. No metastatic spread has been reported, and hence, these tumours are currently considered benign. Herein, we present the radiological and histological features of the first reported occurrence of this entity in bone: a 44-year-old man with a tumour in the right tibia, treated with en bloc resection and showing no signs of relapse at 7 years. This tumour should be added to the differential diagnosis of bone lesions which harbour EWSR1 gene rearrangement.


Subject(s)
Calmodulin-Binding Proteins , RNA-Binding Proteins , Adult , Calmodulin-Binding Proteins/genetics , Humans , Male , RNA-Binding Protein EWS/genetics , Smad3 Protein
15.
J Pathol ; 252(4): 433-440, 2020 12.
Article in English | MEDLINE | ID: mdl-32866294

ABSTRACT

The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3-3A or H3-3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3-mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3-mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , DNA Methylation , Giant Cell Tumor of Bone/genetics , Mutation , Bone Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Giant Cell Tumor of Bone/pathology , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Whole Genome Sequencing
16.
J Pathol ; 252(2): 151-164, 2020 10.
Article in English | MEDLINE | ID: mdl-32666581

ABSTRACT

Diagnosing MPNST can be challenging, but genetic alterations recently identified in polycomb repressive complex 2 (PRC2) core component genes, EED and SUZ12, resulting in global loss of the histone 3 lysine 27 trimethylation (H3K27me3) epigenetic mark, represent drivers of malignancy and a valuable diagnostic tool. However, the reported loss of H3K27me3 expression ranges from 35% to 84%. We show that advances in molecular pathology now allow many MPNST mimics to be classified confidently. We confirm that MPNSTs harbouring mutations in PRC2 core components are associated with loss of H3K27me3 expression; whole-genome doubling was detected in 68%, and SSTR2 was amplified in 32% of MPNSTs. We demonstrate that loss of H3K27me3 expression occurs overall in 38% of MPNSTs, but is lost in 76% of histologically classical cases, whereas loss was detected in only 23% cases with heterologous elements and 14% where the diagnosis could not be provided on morphology alone. H3K27me3 loss is rarely seen in other high-grade sarcomas and was not found to be associated with an inferior outcome in MPNST. We show that DNA methylation profiling distinguishes MPNST from its histological mimics, was unrelated to anatomical site, and formed two main clusters, MeGroups 4 and 5. MeGroup 4 represents classical MPNSTs lacking H3K27me3 expression in the majority of cases, whereas MeGroup 5 comprises MPNSTs exhibiting non-classical histology and expressing H3K27me3 and cluster with undifferentiated sarcomas. The two MeGroups are distinguished by differentially methylated PRC2-associated genes, the majority of which are hypermethylated in the promoter regions in MeGroup 4, indicating that the PRC2 target genes are not expressed in these tumours. The methylation profiles of MPNSTs with retention of H3K27me3 in MeGroups 4 and 5 are independent of mutations in PRC2 core components and the driver(s) in these groups remain to be identified. Our results open new avenues of investigation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Histones/metabolism , Neurofibrosarcoma/diagnosis , Neurofibrosarcoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , DNA Methylation , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Neurofibrosarcoma/classification , Young Adult
17.
J Pathol Clin Res ; 6(4): 297-307, 2020 10.
Article in English | MEDLINE | ID: mdl-32573957

ABSTRACT

The largest whole genome sequencing (WGS) endeavour involving cancer and rare diseases was initiated in the UK in 2015 and ran for 5 years. Despite its rarity, sarcoma ranked third overall among the number of patients' samples sent for sequencing. Herein, we recount the lessons learned by a specialist sarcoma centre that recruited close to 1000 patients to the project, so that we and others may learn from our experience. WGS data was generated from 597 patients, but samples from the remaining approximately 400 patients were not sequenced. This was largely accounted for by unsuitability due to extensive necrosis, secondary to neoadjuvant radiotherapy or chemotherapy, or being placed in formalin. The number of informative genomes produced was reduced further by a PCR amplification step. We showed that this loss of genomic data could be mitigated by sequencing whole genomes from needle core biopsies. Storage of resection specimens at 4 °C for up to 96 h overcame the challenge of freezing tissue out of hours including weekends. Removing access to formalin increased compliance to these storage arrangements. With over 70 different sarcoma subtypes described, WGS was a useful tool for refining diagnoses and identifying novel alterations. Genomes from 350 of the cohort of 597 patients were analysed in this study. Overall, diagnoses were modified for 3% of patients following review of the WGS findings. Continued refinement of the variant-calling bioinformatic pipelines is required as not all alterations were identified when validated against histology and standard of care diagnostic tests. Further research is necessary to evaluate the impact of germline mutations in patients with sarcoma, and sarcomas with evidence of hypermutation. Despite 50% of the WGS exhibiting domain 1 alterations, the number of patients with sarcoma who were eligible for clinical trials remains small, highlighting the need to revaluate clinical trial design.


Subject(s)
Biomarkers, Tumor/genetics , Mutation , Sarcoma/genetics , Whole Genome Sequencing , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA Mutational Analysis , Databases, Genetic , Female , Genetic Predisposition to Disease , Humans , Infant , Male , Middle Aged , Phenotype , Polymerase Chain Reaction , Precision Medicine , Predictive Value of Tests , Prognosis , Research Design , Sarcoma/mortality , Sarcoma/pathology , Sarcoma/therapy , Young Adult
18.
JAMA Oncol ; 6(5): 724-734, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32191290

ABSTRACT

Importance: Osteosarcoma, the most common malignant bone tumor in children and adolescents, occurs in a high number of cancer predisposition syndromes that are defined by highly penetrant germline mutations. The germline genetic susceptibility to osteosarcoma outside of familial cancer syndromes remains unclear. Objective: To investigate the germline genetic architecture of 1244 patients with osteosarcoma. Design, Setting, and Participants: Whole-exome sequencing (n = 1104) or targeted sequencing (n = 140) of the DNA of 1244 patients with osteosarcoma from 10 participating international centers or studies was conducted from April 21, 2014, to September 1, 2017. The results were compared with the DNA of 1062 individuals without cancer assembled internally from 4 participating studies who underwent comparable whole-exome sequencing and 27 173 individuals of non-Finnish European ancestry who were identified through the Exome Aggregation Consortium (ExAC) database. In the analysis, 238 high-interest cancer-susceptibility genes were assessed followed by testing of the mutational burden across 736 additional candidate genes. Principal component analyses were used to identify 732 European patients with osteosarcoma and 994 European individuals without cancer, with outliers removed for patient-control group comparisons. Patients were subsequently compared with individuals in the ExAC group. All data were analyzed from June 1, 2017, to July 1, 2019. Main Outcomes and Measures: The frequency of rare pathogenic or likely pathogenic genetic variants. Results: Among 1244 patients with osteosarcoma (mean [SD] age at diagnosis, 16 [8.9] years [range, 2-80 years]; 684 patients [55.0%] were male), an analysis restricted to individuals with European ancestry indicated a significantly higher pathogenic or likely pathogenic variant burden in 238 high-interest cancer-susceptibility genes among patients with osteosarcoma compared with the control group (732 vs 994, respectively; P = 1.3 × 10-18). A pathogenic or likely pathogenic cancer-susceptibility gene variant was identified in 281 of 1004 patients with osteosarcoma (28.0%), of which nearly three-quarters had a variant that mapped to an autosomal-dominant gene or a known osteosarcoma-associated cancer predisposition syndrome gene. The frequency of a pathogenic or likely pathogenic cancer-susceptibility gene variant was 128 of 1062 individuals (12.1%) in the control group and 2527 of 27 173 individuals (9.3%) in the ExAC group. A higher than expected frequency of pathogenic or likely pathogenic variants was observed in genes not previously linked to osteosarcoma (eg, CDKN2A, MEN1, VHL, POT1, APC, MSH2, and ATRX) and in the Li-Fraumeni syndrome-associated gene, TP53. Conclusions and Relevance: In this study, approximately one-fourth of patients with osteosarcoma unselected for family history had a highly penetrant germline mutation requiring additional follow-up analysis and possible genetic counseling with cascade testing.


Subject(s)
Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , High-Throughput Nucleotide Sequencing/methods , Osteosarcoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult
19.
J Pathol Clin Res ; 6(2): 113-123, 2020 04.
Article in English | MEDLINE | ID: mdl-31916407

ABSTRACT

The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16-negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post-transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post-transcriptional regulatory mechanism that is yet to be defined.


Subject(s)
Chordoma/genetics , Chordoma/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Genes, p16/physiology , Adolescent , Adult , Aged , Child , Chordoma/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Gene Deletion , Humans , Immunohistochemistry/methods , Loss of Heterozygosity/genetics , Male , MicroRNAs/metabolism , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL