Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 922: 148557, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38740354

ABSTRACT

The primary aim of this study was to explore the impact of diabetes on matrix metalloproteases and tissue inhibitors, crucial factors for successful implantation, and to elucidate the molecular mechanisms that undergo changes in the endometrium and the embryo during diabetic pregnancies. In this investigation, we established a streptozotocin-induced diabetic pregnant rat model. Microarray analysis followed by RT-PCR was utilized to identify gene regions exhibiting expression alterations. Subsequently, we assessed the effects of MMPs and tissue inhibitors using ELISA and immunohistochemistry techniques, in addition to analyzing changes at the genetic level. Diabetes led to the upregulation of MMP3, MMP9, and MMP20 on the 6.5th day of pregnancy, while causing the downregulation of MMP3, MMP9, and MMP11 on the 8.5th day of pregnancy. TIMP1 expression was downregulated on the 8.5th day compared to the control group. No statistically significant differences were observed between the groups regarding other TIMP expressions. KEGG pathway analysis revealed that diabetes induced alterations in the expression of genes associated with certain microRNAs, as well as signaling pathways such as cAMP, calcium, BMP, p53, MAPK, PI3K-Akt, Jak-STAT, Hippo, Wnt, and TNF. Additionally, gene ontology analysis unveiled changes in membrane structures, extracellular matrix, signaling pathways, ion binding, protein binding, cell adhesion molecule binding, and receptor-ligand activity. This study serves as a valuable guide for investigating the mechanisms responsible for complications in diabetic pregnancies. By revealing the early-stage effects of diabetes, it offers insight into the development of new diagnostic and treatment approaches, ultimately contributing to improved patient care.


Subject(s)
Diabetes Mellitus, Experimental , Endometrium , Animals , Female , Pregnancy , Endometrium/metabolism , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Signal Transduction , Embryo, Mammalian/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Pregnancy in Diabetics/metabolism , Pregnancy in Diabetics/genetics , Embryo Implantation/genetics , Rats, Sprague-Dawley , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Oncotarget ; 7(21): 31014-28, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27105536

ABSTRACT

Small cell lung cancer (SCLC) is the most aggressive type of lung cancer with high mortality. One of the MYC family genes, MYC, MYCL or MYCN, is amplified in ~20% of the SCLCs; therefore, MYC proteins are potential therapeutic targets in SCLC patients. We investigated the therapeutic impact of Omomyc, a MYC dominant negative, in a panel of SCLC cell lines. Strikingly, Omomyc suppressed the growth of all tested cell lines by inducing cell cycle arrest and/or apoptosis. Induction of G1 arrest by Omomyc was found to be dependent on the activation of CDKN1A, in part, through the TP73 pathway. Our results strongly indicate that SCLC cells carrying amplification of MYC, MYCL or MYCN are addicted to MYC function, suggesting that MYC targeting would be an efficient therapeutic option for SCLC patients.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/therapy , Peptide Fragments/biosynthesis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/biosynthesis , Retinoblastoma Binding Proteins/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/therapy , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Cycle Checkpoints/genetics , Cell Death/genetics , Cell Growth Processes/genetics , Gene Amplification , Gene Silencing , Genes, p53 , Genetic Therapy/methods , HEK293 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Targeted Therapy , Peptide Fragments/genetics , Proto-Oncogene Proteins c-myc/genetics , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transfection , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...