Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Lung Cancer Res ; 7(6): 616-630, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30505706

ABSTRACT

BACKGROUND: Tumor mutational burden (TMB) is an increasingly important biomarker for immune checkpoint inhibitors. Recent publications have described strong association between high TMB and objective response to mono- and combination immunotherapies in several cancer types. Existing methods to estimate TMB require large amount of input DNA, which may not always be available. METHODS: In this study, we develop a method to estimate TMB using the Oncomine Tumor Mutation Load (TML) Assay with 20 ng of DNA, and we characterize the performance of this method on various formalin-fixed, paraffin-embedded (FFPE) research samples of several cancer types. We measure the analytical performance of TML workflow through comparison with control samples with known truth, and we compare performance with an orthogonal method which uses matched normal sample to remove germline variants. We perform whole exome sequencing (WES) on a batch of FFPE samples and compare the WES TMB values with TMB estimates by the TML assay. RESULTS: In-silico analyses demonstrated the Oncomine TML panel has sufficient genomic coverage to estimate somatic mutations with a strong correlation (r2=0.986) to WES. Further, in silico prediction using WES data from three separate cohorts and comparing with a subset of the WES overlapping with the TML panel, confirmed the ability to stratify responders and non-responders to immune checkpoint inhibitors with high statistical significance. We found the rate of somatic mutations with the TML assay on cell lines and control samples were similar to the known truth. We verified the performance of germline filtering using only a tumor sample in comparison to a matched tumor-normal experimental design to remove germline variants. We compared TMB estimates by the TML assay with that from WES on a batch of FFPE research samples and found high correlation (r2=0.83). We found biologically interesting tumorigenesis signatures on FFPE research samples of colorectal cancer (CRC), lung, and melanoma origin. Further, we assessed TMB on a cohort of FFPE research samples including lung, colon, and melanoma tumors to discover the biologically relevant range of TMB values. CONCLUSIONS: These results show that the TML assay targeting a 1.7-Mb genomic footprint can accurately predict TMB values that are comparable to the WES. The TML assay workflow incorporates a simple workflow using the Ion GeneStudio S5 System. Further, the AmpliSeq chemistry allows the use of low input DNA to estimate mutational burden from FFPE samples. This TMB assay enables scalable, robust research into immuno-oncology biomarkers with scarce samples.

2.
Science ; 346(6206): 251-6, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25301630

ABSTRACT

Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Genetic Heterogeneity , Genomic Instability , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , APOBEC-1 Deaminase , Carcinogens/toxicity , Carcinoma, Non-Small-Cell Lung/chemically induced , Cytidine Deaminase/genetics , Evolution, Molecular , Gene Dosage , Humans , Lung Neoplasms/chemically induced , Mutation , Neoplasm Recurrence, Local/genetics , Prognosis , Smoking/adverse effects , Translocation, Genetic , Tumor Cells, Cultured
3.
PeerJ ; 2: e520, 2014.
Article in English | MEDLINE | ID: mdl-25177534

ABSTRACT

Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.

4.
N Engl J Med ; 362(13): 1181-91, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20220177

ABSTRACT

BACKGROUND: Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot-Marie-Tooth disease. METHODS: We identified a family with a recessive form of Charcot-Marie-Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members. RESULTS: We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot-Marie-Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome. CONCLUSIONS: As shown in this study of a family with Charcot-Marie-Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Genetic Association Studies , Genome, Human , Adult , Aged , Aged, 80 and over , Codon, Nonsense , Female , Genes, Recessive , Genotype , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...