Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(11): 5611-5620, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38883434

ABSTRACT

Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.

2.
J Am Chem Soc ; 146(23): 16324-16331, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810220

ABSTRACT

Ultrasmall metal oxide nanoparticles (<5 nm) potentially have new properties, different from conventional nanoparticles. The precise size control of ultrasmall nanoparticles remains difficult for metal oxide. In this study, the size of CeO2 nanoparticles was precisely controlled (1.3-9.4 nm) using a continuous-flow hydrothermal reactor, and the atomic distortion that occurs in ultrasmall metal oxides was explored for CeO2. The crystalline nanoparticles grow rapidly like droplets via coalescence, although they reach a critical particle size (∼3 to 4 nm), beyond which they grow slowly and change shape through ripening. In the initial growth stage, the ultrasmall nanoparticles exhibit disordered atomic configurations, including stacking faults. In ultrasmall CeO2 nanoparticles (<3 to 4 nm), unusual electron localization occurs on Ce 4f orbitals (Ce3+) as a result of O disordering, regardless of O vacancy concentration. This behavior differs from ordinary electron localization caused by the presence of O vacancies. The ultrasmall metal oxides have extraordinary distortion states, making them promising for use in nanotechnology applications. Furthermore, the proposed synthesis method can be applied to various other metal oxides and allows exploration of their properties.

3.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925291

ABSTRACT

The observation of neutrinoless double beta decay is an important issue in nuclear and particle physics. The development of organic liquid scintillators with high transparency and a high concentration of the target isotope would be very useful for neutrinoless double beta decay experiments. Therefore, we propose a liquid scintillator loaded with metal oxide nanoparticles containing the target isotope. In this work, 6-phenylhexanoic acid-modified ZrO2 nanoparticles, which contain 96Zr as the target isotope, were synthesized under sub/supercritical hydrothermal conditions. The effects of the synthesis temperature on the formation and surface modification of the nanoparticles were investigated. Performing the synthesis at 250 and 300 °C resulted in the formation of nanoparticles with smaller particle sizes and higher surface modification densities than those prepared at 350 and 400 °C. The highest modification density (3.1 ± 0.2 molecules/nm2) and Zr concentration of (0.33 ± 0.04 wt.%) were obtained at 300 °C. The surface-modified ZrO2 nanoparticles were dispersed in a toluene-based liquid scintillator. The liquid scintillator was transparent to the scintillation wavelength, and a clear scintillation peak was confirmed by X-ray-induced radioluminescence spectroscopy. In conclusion, 6-phenylhexanoic acid-modified ZrO2 nanoparticles synthesized at 300 °C are suitable for loading in liquid scintillators.

4.
J Colloid Interface Sci ; 587: 574-580, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33250177

ABSTRACT

The dispersibility of nanoparticles in solvents remains difficult to predict and control. In this paper, the dispersibility of organically-modified nanoparticles in various solvents with different solvent properties and molecular sizes are investigated. The study indicates that solvent molecular size, in addition to the affinity between organic modifier and solvent molecules, affects the dispersibility of the nanoparticles. The experimental results imply that solvents with molecular size small enough can disperse nanoparticles more efficiently. In addition, based on the concept that solvent accommodation induces the enhancement of dispersibility, two approaches to improve nanoparticle dispersibility in desired solvents are proposed. One is the addition of a small amount of solvent with the right size and properties to both penetrate the modifier shell and to act as intermediate between the desired solvent and the organic modifier molecules. The other is dual-molecule modification to create additional space at modifier-shell surface for the penetration of the desired solvent molecules. The results of these approaches based on the concept of the solvent accommodation can enhance the dispersibility trends.

5.
ACS Appl Mater Interfaces ; 12(23): 25748-25755, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32412238

ABSTRACT

In recent years, organic electrode materials have been strongly considered for use in sustainable batteries. However, most organic electrode materials have low electrical conductivity and require a lot of conductive additives, which decrease the effective capacity based on the entire electrode weight/volume. In this study, we propose a novel electrical conductivity-relay system that imparts electrical conductivity to organic small molecular electrodes without any conductive additive throughout the charge/discharge cycles. It consists of the combination of the charge-transfer phenomenon in a pristine state and the formation of organic radical salts in redox states. Herein, we demonstrate this electrical conductivity-relay system using a simply mixed molecular crystal couple of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) as a cathode without any conductive additive and aqueous sodium bromide as an electrolyte. During charge/discharge, the electrical conductivity of the cathode is supported by charge-transfer at the TTF/TCNQ interface and (TTF)Brn (0.7 ≤ n ≤ 0.8) and NaTCNQ radical salts, and the cathode exhibits a specific capacity of 112 mAh g-1 and a retention rate of 80.7% at the 30th cycle. Furthermore, the molecular crystal couple electrode of TTF and TCNQ shows better charge/discharge performance than the pure charge-transfer complex electrode, indicating that this system expands candidates for organic electrode materials to various pairs and mixing ratios of small molecules that do not form charge-transfer complexes.

6.
Nanoscale Adv ; 1(9): 3383-3387, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133561

ABSTRACT

This study presents a simple one-pot synthesis method to achieve few-layered and defective Mo(S,Se)2 and (Mo,W)S2 by using supercritical water with organic reducing agents from simple and less-toxic precursors. This synthesis process is expected to be suitable for preparing other various kinds of TMD solid solutions.

7.
RSC Adv ; 8(58): 33391-33397, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-35548164

ABSTRACT

Structural defects, including point defects, dislocation and planar defects, significantly affect the physical and chemical properties of low-dimensional materials, such as layered compounds. In particular, inversion domain boundary is an intrinsic defect surrounded by a 60° grain boundary, which significantly influences electronic transport properties. We study atomic structures of the inversion domain grain boundaries (IDBs) in layered transition metal dichalcogenides (MoSe2 and MoS2) obtained by an exfoliation method, based on the aberration-corrected scanning transmission electron microscopy observation and density functional theory (DFT) calculation. The atomic-scale observation shows that the grain boundaries consist of two different types of 4-fold ring point shared and 8-fold ring edge shared chains. The results of DFT calculations indicate that the inversion domain grain boundary behaves as a metallic one-dimensional chain embedded in the semiconducting MoSe2 matrix with the occurrence of a new state within the band gap.

8.
Langmuir ; 33(22): 5406-5411, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28509556

ABSTRACT

Top-down graphene production via exfoliation from graphite produces a mass of graphene with structural variation in terms of the number of layers, sheet size, edge type, and defect density. All of these characteristics affect its electronic structure. To develop useful applications of graphene, structural separation of graphene is necessary. In this study, we investigate the adsorption behavior of different types of graphene fragments using a multicolumn gel chromatography system with a view to developing an efficient method for separating high-quality graphene. The graphene was dispersed in an aqueous sodium dodecyl sulfate (SDS) surfactant solution and flown through allyl-dextran-based gel columns connected in series. In the chromatographic operation, we observed that the small-sized or oxidized graphene fragments tended to bind to the gel and the relatively large-sized graphene with a low oxygen content eluted from the gel column. In this system, the adsorbed SDS molecules on the graphitic surface prevented graphitic materials from binding to the gel and the oxygen functional groups on the graphene oxide or at the abundant edge of small-sized graphene hindered SDS adsorption. We hypothesize that the reduced SDS adsorption density results in the preferential adsorption of small-sized or oxidized graphene fragments on the gel. This type of chromatographic separation is a cost-effective and scalable method for sorting nanomaterials. The structural separation of graphene based on the adsorption priority found in this study will improve the quality of graphene nanosheets on an industrial scale.

9.
ACS Omega ; 2(5): 2360-2367, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457585

ABSTRACT

The ultrathin two-dimensional nanosheets of layered transition-metal dichalcogenides (TMDs) have attracted great interest as an important class of materials for fundamental research and technological applications. Solution-phase processes are highly desirable to produce a large amount of TMD nanosheets for applications in energy conversion and energy storage such as catalysis, electronics, rechargeable batteries, and capacitors. Here, we report a rapid exfoliation by supercritical fluid processing for the production of MoS2 and MoSe2 nanosheets. Atomic-resolution high-angle annular dark-field imaging reveals high-quality exfoliated MoS2 and MoSe2 nanosheets with hexagonal structures, which retain their 2H stacking sequence. The obtained nanosheets were tested for their electrochemical performance in a hybrid Mg-Li-ion battery as a proof of functionality. The MoS2 and MoSe2 nanosheets exhibited the specific capacities of 81 and 55 mA h g-1, respectively, at a current rate of 20 mA g-1.

10.
Sci Rep ; 4: 3975, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24496051

ABSTRACT

Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets have been synthesized by a one-pot supercritical fluid (SCF) processing. The effect of different amines and their roles on the morphology-control has been investigated in detail. It was found that amine having long alkyl chain such as hexamethylenediamine played important roles to manipulate the shape of the nanocrystals by selective adsorption on the specific {010} facets. More importantly, the nanorods and nanoplates showed better electrochemical performance than that of nanoparticles which was attributed to their unique crystallographic orientation with short Li ion diffusion path. The present study emphasizes the importance of crystallographic orientation in improving the electrochemical performance of the high voltage LiCoPO4 cathode materials for Li-ion batteries.

11.
Sci Rep ; 4: 3591, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24395117

ABSTRACT

Safe and inexpensive energy storage devices with long cycle lifetimes and high power and energy densities are mandatory for the development of electrical power grids that connect with renewable energy sources. In this study, we demonstrated metal-free aqueous redox capacitors using couples comprising low-molecular-weight organic compounds. In addition to the electric double layer formation, proton insertion/extraction reactions between a couple consisting of inexpensive quinones/hydroquinones contributed to the energy storage. This energy storage mechanism, in which protons are shuttled back and forth between two electrodes upon charge and discharge, can be regarded as a proton rocking-chair system. The fabricated capacitor showed a large capacity (>20 Wh/kg), even in the applied potential range between 0-1 V, and high power capability (>5 A/g). The support of the organic compounds in nanoporous carbon facilitated the efficient use of the organic compounds with a lifetime of thousands of cycles.

12.
ACS Appl Mater Interfaces ; 5(20): 9926-32, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24060566

ABSTRACT

LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.

13.
ACS Macro Lett ; 2(9): 794-798, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-35606982

ABSTRACT

We developed a one-step method for production of anisotropically etched graphene using supercritical fluid (SCF). Anisotropic etching of a graphite substrate and dispersed graphite powder with Ag nanoparticles was conducted in supercritical water (SCW). Because of the exfoliation effect of SCF, graphene was isolated from the graphite simultaneously with the anisotropic etching. High-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy revealed the production of multilayer graphene exfoliated from the anisotropically etched graphite surface.

14.
Nano Lett ; 12(3): 1146-51, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22332722

ABSTRACT

Novel ultrathin Li(2)MnSiO(4) nanosheets have been prepared in a rapid one pot supercritical fluid synthesis method. Nanosheets structured cathode material exhibits a discharge capacity of ~340 mAh/g at 45 ± 5 °C. This result shows two lithium extraction/insertion performances with good cycle ability without any structural instability up to 20 cycles. The two-dimensional nanosheets structure enables us to overcome structural instability problem in the lithium metal silicate based cathode materials and allows successful insertion/extraction of two complete lithium ions.


Subject(s)
Electric Power Supplies , Electrodes , Lithium Compounds/chemistry , Lithium/chemistry , Manganese/chemistry , Membranes, Artificial , Nanostructures/chemistry , Oxides/chemistry , Sulfates/chemistry , Energy Transfer , Equipment Design , Equipment Failure Analysis , Ions , Nanostructures/ultrastructure , Particle Size
15.
J Nanosci Nanotechnol ; 12(12): 8913-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447938

ABSTRACT

Investigations of the electronic structure of graphene nanosheets synthesized by the reduction of oxidized graphene nanosheets were carried out using ultra-soft X-ray emission spectroscopy (USXES). Oxidized graphene nanosheets were produced from carbon nanofiber starting material using a modified Hummers method. X-ray diffraction, and scanning and transmission electron microscopy investigations were used in addition to USXES to study the electronic structure evolution from carbon nanofibers to graphene nanosheets. The effect of the degree of corrugation of the graphene nanosheets on the fine structure of the CK(alpha)-emission bands was revealed by USXES. It was found that corrugation of the graphene nanosheets is caused by overlapping of the pi-orbitals and formation of mixed (sigma + pi)-states.

16.
ACS Appl Mater Interfaces ; 3(9): 3268-71, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21838244

ABSTRACT

In this study, we achieve the direct conversion of metallic Cu-In films to compound semiconductor CuInSe(2) films, at quite low temperature around 300 °C using less hazardous metalorganic selenium source in supercritical fluid (SCF). We investigated the effects of temperature and fluid (ethanol) density, and found that supercritical ethanol plays a crucial role in this low-temperature selenization reaction. Such SCF-assisted direct conversion reactions can facilitate large-scale, low-temperature, and rapid synthesis of CuInSe(2) films, which can potentially lead to the low-cost production of solar cells.


Subject(s)
Copper/chemistry , Indium/chemistry , Selenium/chemistry , Chromatography, Supercritical Fluid , Ethanol/chemistry , Semiconductors , Solar Energy , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...