Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 31: 339-351, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36789273

ABSTRACT

Complement component 5 (C5), an important molecule in the complement cascade, blockade by antibodies shows clinical efficacy in treating complement-mediated disorders. However, insufficient blockading induced by single-nucleotide polymorphisms in the C5 protein or frequent development of "breakthrough" intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria treated with eculizumab have been reported. Herein, we developed a lipid nanoparticle (LNP)-formulated siRNA targeting C5 that was efficiently delivered to the liver and silenced C5 expression. We identified a potent C5-siRNA with an in vitro IC50 of 420 pM and in vivo ED50 of 0.017 mg/kg following a single administration. Single or repeated administrations of the LNP-formulated C5-siRNA allowed robust and durable suppression of liver C5 expression in mice. Complement C5 silencing ameliorated C5b-dependent anti-acetylcholine receptor antibody-induced myasthenia gravis and C5a-dependent collagen-induced arthritis symptoms. Similarly, in nonhuman primates, a single administration of C5-siRNA/LNP-induced dose-dependent plasma C5 suppression and concomitantly inhibited serum complement activity; complement activity recovered to the pre-treatment levels at 65 days post administration, thus indicating that the complement activity can be controlled for a specific period. Our findings provide the foundation for further developing C5-siRNA delivered via LNPs as a potential therapeutic for complement-mediated diseases.

2.
Transplantation ; 106(12): 2338-2347, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35749284

ABSTRACT

BACKGROUND: Prophylaxis of antibody-mediated rejection (AMR) caused by donor-specific antibodies remains challenging. Given the critical roles of complement activity in antibody-mediated graft injury, we developed a lipid nanoparticle (LNP) formulation of small-interfering RNA against complement C5 (C5 siRNA-LNP) and investigated whether C5 siRNA-LNP could downregulate the complement activity and act as an effective treatment for AMR. METHODS: Lewis recipient rats were sensitized by skin grafting from Brown Norway donor rats. Kidney transplantation was performed at 4 wk post-skin grafting.C5 siRNA- or control siRNA-LNP was administered intravenously, and the weekly injections were continued until the study's conclusion. Cyclosporin (CsA) and/or deoxyspergualin (DSG) were used as adjunctive immunosuppressants. Complement activity was evaluated using hemolysis assays. The deposition of C5b9 in the grafts was evaluated using immunohistochemical analysis on day 7 posttransplantation. RESULTS: C5 siRNA-LNP completely suppressed C5 expression and complement activity (hemolytic activity ≤ 20%) 7 d postadministration. C5 siRNA-LNP in combination with CsA and DSG (median survival time: 56.0 d) prolonged graft survival compared with control siRNA-LNP in combination with CsA and DSG (median survival time: 21.0 d; P = 0.0012; log-rank test). Immunohistochemical analysis of the grafts revealed that downregulation of C5 expression was associated with a reduction in C5b9-positive area ( P = 0.0141, Steel-Dwass test). CONCLUSIONS: C5 siRNA-LNP combined with immunosuppressants CsA and DSG downregulated C5 activity and significantly prolonged graft survival compared with control siRNA-LNP with CsA and DSG. Downregulation of C5 expression using C5 siRNA-LNP may be an effective therapeutic approach for AMR.


Subject(s)
Complement C5 , Graft Survival , Kidney Transplantation , RNA, Small Interfering , Animals , Rats , Antibodies , Graft Rejection/prevention & control , Immunosuppressive Agents/pharmacology , Rats, Inbred Lew , RNA, Small Interfering/genetics
3.
Genesis ; 59(4): e23416, 2021 04.
Article in English | MEDLINE | ID: mdl-33651473

ABSTRACT

Embryonic vascular development is achieved through the complex arrays of differentiation, proliferation, migration and mutual interaction of different cell types, and visualization as well as purification of unique cell populations are fundamental in studying its detailed mechanisms using in vivo experimental models. We previously demonstrated that Tmem100 was a novel endothelial gene encoding a small transmembrane protein, and that Tmem100 null mice showed embryonic lethality due to severe impairment of vascular formation. In the present study, we generated an EGFP reporter mouse line using a 216 kb genomic region containing mouse Tmem100 gene. A novel line designated as Tmem100-BAC-EGFP mice precisely recapitulated the Tmem100 expression profile at the mid-gestational stage, which was highly enriched in endothelial cells of large caliber arteries in mouse embryos. FACS experiments demonstrated that Tmem100-BAC-EGFP mice served to selectively purify a specific population of arterial endothelial cells, indicating their usefulness not only for the research concerning Tmem100 expression and function but also for comparative analysis of multiple endothelial cell subgroups in embryonic vascular development.


Subject(s)
Arteries/embryology , Myelin Proteins/metabolism , Neovascularization, Physiologic/genetics , Animals , Arteries/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/embryology , Endothelium, Vascular/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Myelin Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Mol Carcinog ; 55(11): 1573-1583, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26377854

ABSTRACT

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6 ) mediates a variety of cellular functions, including cell motility. In the present study, we investigated the effects of LPA receptors on cell motile activity during multi-stage hepatocarcinogenesis in rat liver epithelial WB-F344 cells treated with chemical liver carcinogens. Cells were treated with a initiator (N-nitrosodiethylamine (DEN)) and three promoters (phenobarbital (PB), okadaic acid (OA) and clofibrate) every 24 h for 2 days. Cell motile activity was elevated by DEN, correlating with Lpar3 expression. PB, OA, and clofibrate elevated Lpar1 expression and inhibited cell motile activity. To evaluate the effects of long-term treatment on cell motility, cells were treated with DEN and/or PB for at least 6 months. Lpar3 expression and cell motile activity were significantly elevated by the long-term DEN treatment with or without further PB treatment. In contrast, long-term PB treatment with or without further DEN elevated Lpar1 expression and inhibited cell motility. When the synthesis of extracellular LPA was blocked by a potent ATX inhibitor S32826 before cell motility assay, the cell motility induced by DEN and PB was markedly suppressed. These results suggest that activation of the different LPA receptors may regulate the biological functions of cells treated with chemical carcinogens. © 2015 Wiley Periodicals, Inc.


Subject(s)
Carcinogens/pharmacology , Diethylnitrosamine/adverse effects , Epithelial Cells/drug effects , Liver Neoplasms, Experimental/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Animals , Cell Line , Cell Movement/drug effects , Clofibrate/adverse effects , Clofibrate/pharmacology , Epithelial Cells/cytology , Gene Expression Regulation/drug effects , Liver Neoplasms, Experimental/chemically induced , Okadaic Acid/adverse effects , Okadaic Acid/pharmacology , Phenobarbital/adverse effects , Phenobarbital/pharmacology , Rats , Rats, Inbred F344
5.
Mol Carcinog ; 55(11): 1553-1559, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26331585

ABSTRACT

G-protein-coupled receptor 40 (GPR40) and GPR120 mediate a variety of biological functions by the binding of long and medium chain free fatty acids. In the present study, we investigated a role of GPR40 in the pathogenesis of fibrosarcoma HT1080 cells. The GPR40 gene expression was detected in HT1080 cells, but not the GPR120 gene. The cell motile and invasive activities were markedly enhanced by GPR40 knockdown, compared with control cells. To evaluate whether GPR40 is involved in the cellular functions of HT1080 cells during anticancer drug treatment, HT1080 cells were maintained in condition medium containing cisplatin (CDDP) (0.01-1.0 µM) for 6 mo. The expression levels of the GPR40 gene was elevated by the long-term CDDP treatment in HT1080 cells, while the GPR120 gene expression remained unchanged. The cell motile and invasive activities of HT1080 cells treated with CDDP were significantly lower than those of untreated cells. In gelatin zymography, the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 of HT1080 cells were enhanced by the long-term CDDP treatment. In addition, GW9508 which is an agonist of GPR40 and GPR120 suppressed the cell motile and invasive activities of HT1080 cells treated with CDDP as well as the MMP activation. These results suggest that GPR40 negatively regulates the tumor progression of fibrosarcoma cells. © 2015 Wiley Periodicals, Inc.


Subject(s)
Cisplatin/pharmacology , Fibrosarcoma/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Culture Media, Conditioned/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness
6.
Biochem Biophys Res Commun ; 465(3): 512-5, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26282200

ABSTRACT

Free fatty acids (FFAs) act as extracellular signaling molecules through binding to G-protein-coupled FFA receptors (FFARs). GPR120 and GPR40 are identified as FFARs for medium- and long-chain fatty acids. In the present study, we investigated roles of GPR120 and GPR40 in cellular functions of pancreatic cancer PANC-1 cells, using GPR120 and GPR40 knockdown cells (PANC-sh120 and PANC-sh40 cells respectively). In cell motility assay, PANC-sh120 cells showed the low cell motility, compared with control cells. In contrast, the cell motility of PANC-sh40 cells was significantly higher than that of control cells. Activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. While PANC-sh120 cells indicated the reduced MMP-2 activity, MMP-2 activity in PANC-sh40 cells was significantly higher than that in control cells. On the other hand, no activation of MMP-9 was detected in all cells. In colony assay, the large sized colonies were markedly formed in PANC-sh40 cells. No colony formation was observed in PANC-sh120 cells as well as control cells. These results suggest that distinct effects of GPR120 and GPR40 are involved in the acquisition of malignant property in pancreatic cancer cells.


Subject(s)
Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, G-Protein-Coupled/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Movement , Humans , Male , Neoplasm Invasiveness
7.
Mol Cell Biochem ; 408(1-2): 147-54, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116018

ABSTRACT

Lysophosphatidic acid (LPA) signaling via LPA receptors provides a variety of cellular functions, including angiogenesis. In this study, to assess an involvement of LPA receptors in cell motile activities of endothelial cells during chemotherapy, F-2 cells were treated with cisplatin (CDDP) and doxorubicin (DOX) at a concentration of 0.01 µM every 24 h for at least 1 month. The treatment of CDDP and DOX inhibited the expression levels of the LPA receptor-1 (Lpar1), Lpar2, and Lpar3 genes in F-2 cells. The cell motile activities of CDDP and DOX treated cells were relatively lower than those of untreated cells. Next, we investigated whether cancer cells could stimulate the cell motile activities of F-2 cells treated with CDDP and DOX. For cell motility assay, CDDP- and DOX-treated cells were co-cultured with pancreatic cancer PANC-1 cells. The cell motile activities of CDDP- and DOX-treated cells were significantly enhanced by the existence of PANC-1 cells, correlating with the LPA receptor expressions. In addition, the elevated cell motile activities were suppressed by the pretreatment of an autotaxin inhibitor S32826. These results suggest that LPA signaling via LPA receptors may regulate the cell motile activities of F-2 cells treated with anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Doxorubicin/pharmacology , Endothelial Cells/drug effects , Lysophospholipids/metabolism , Receptors, Lysophosphatidic Acid/genetics , Cell Line , Cell Movement/drug effects , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pancreas/cytology , Pancreas/pathology
8.
Biochem Biophys Res Commun ; 461(1): 59-64, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25849892

ABSTRACT

Lysophosphatidic acid (LPA) is an extracellular biological lipid which interacts with G protein-coupled LPA receptors (LPA1 to LPA6). LPA signaling via LPA receptors mediates several cellular responses. In the present study, to assess the roles of LPA4, LPA5 and LPA6 in cellular functions of pancreatic cancer cells, we generated LPA receptor knockdown cells from PANC-1 cells (PANC-sh4, PANC-sh5 and PANC-sh6 cells, respectively). In cell motility assay, PANC-sh4 and PANC-sh5 cells enhanced the cell motile activities, compared with control cells. In contrast, the cell motile activity of PANC-sh6 cells was suppressed. The invasive activities of PANC-sh4 and PANC-sh5 cells were markedly stimulated, while PANC-sh6 cells showed the low invasive activity. In colony assay, PANC-sh4 and PANC-sh5 cells formed the large sized colonies, but not PANC-sh6 cells. When endothelial cells were incubated with supernatants from PANC-sh4 and PANC-sh5 cells, the cell motility and tube formation of endothelial cells were significantly induced, but not PANC-sh6 cells. These results suggest that the diverse roles of LPA4, LPA5 and LPA6 are involved in the activation of tumor progression in pancreatic cancer cells.


Subject(s)
Lysophospholipids/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Purinergic P2/metabolism , Cell Line, Tumor , Cell Movement , Humans , Neoplasm Invasiveness , Receptors, Purinergic
SELECTION OF CITATIONS
SEARCH DETAIL
...