Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Chem Biol Interact ; 403: 111216, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39218371

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.


Subject(s)
Arginine , Leishmania , Macrophages , Molecular Docking Simulation , Reactive Oxygen Species , Animals , Arginine/pharmacology , Arginine/chemistry , Arginine/metabolism , Mice , Humans , Leishmania/drug effects , Reactive Oxygen Species/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Sheep , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Erythrocytes/drug effects , Erythrocytes/parasitology , Erythrocytes/metabolism , Cell Line , Leishmania mexicana/drug effects , Leishmania mexicana/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
3.
Parasitol Res ; 123(5): 217, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772951

ABSTRACT

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Subject(s)
Autophagy , Oils, Volatile , Origanum , Reactive Oxygen Species , Toxoplasma , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Origanum/chemistry , Humans , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Necrosis/drug therapy , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
4.
Pathogens ; 12(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37242330

ABSTRACT

American tegumentary leishmaniasis, a zoonotic disease caused by the Leishmania genus, poses significant challenges in treatment, including administration difficulty, low efficacy, and parasite resistance. Novel compounds or associations offer alternative therapies, and natural products such as oregano essential oil (OEO), extracted from Origanum vulgare, have been extensively researched due to biological effects, including antibacterial, antifungal, and antiparasitic properties. Silver nanoparticles (AgNp), a nanomaterial with compelling antimicrobial and antiparasitic activity, have been shown to exhibit potent leishmanicidal properties. We evaluated the in vitro effect of OEO and AgNp-Bio association on L. amazonensis and the death mechanisms of the parasite involved. Our results demonstrated a synergistic antileishmanial effect of OEO + AgNp on promastigote forms and L. amazonensis-infected macrophages, which induced morphological and ultrastructural changes in promastigotes. Subsequently, we investigated the mechanisms underlying parasite death and showed an increase in NO, ROS, mitochondrial depolarization, accumulation of lipid-storage bodies, autophagic vacuoles, phosphatidylserine exposure, and damage to the plasma membrane. Moreover, the association resulted in a reduction in the percentage of infected cells and the number of amastigotes per macrophage. In conclusion, our findings establish that OEO + AgNp elicits a late apoptosis-like mechanism to combat promastigote forms and promotes ROS and NO production in infected macrophages to target intracellular amastigote forms.

5.
Sci Rep ; 13(1): 6928, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117253

ABSTRACT

Available treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3',5,5'-Tetramethoxy-biphenyl-4,4'-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62-0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.


Subject(s)
Antiprotozoal Agents , Leishmania mexicana , Leishmania , Animals , Sheep , Mice , Molecular Docking Simulation , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Mice, Inbred BALB C
6.
Eur J Pharmacol ; 939: 175421, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435234

ABSTRACT

Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Prostatic Neoplasms , Male , Humans , Neoplasm Recurrence, Local , Phototherapy/methods , Prostatic Neoplasms/drug therapy , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor
7.
Exp Parasitol ; 241: 108343, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944696

ABSTRACT

Toxoplasma gondii, a protozoan parasite, is responsible for toxoplasmosis. The available therapy for patients with toxoplasmosis involves a combination of pyrimethamine and sulfadiazine, which have several adverse effects, including bone marrow suppression, megaloblastic anemia, leukopenia, and granulocytopenia. The development of therapeutic alternatives is essential for the management of toxoplasmosis, emphasizing the recent advances in nanomedicine. This study aimed to evaluate the in vitro effects of biogenic silver nanoparticles (AgNp-Bio) on tachyzoite forms and Leydig cells infected with T. gondii. We observed that the AgNp-Bio reduced the viability of the tachyzoites and did not exhibit cytotoxicity against Leydig cells at low concentrations. Additionally, treatment with AgNp-Bio reduced the rate of infection and proliferation of the parasite, and lowered the testosterone levels in the infected cells. It increased the levels of IL-6 and TNF-α and reduced the levels of IL- 10. Among the morphological and ultrastructural changes, AgNp-Bio induced a reduction in the number of intracellular tachyzoites and caused changes in the tachyzoites with accumulation of autophagic vacuoles and a decrease in the number of tachyzoites inside the parasitophorous vacuoles. Collectively, our data demonstrate that the AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and inflammatory mechanisms and could be a potential alternative treatment for toxoplasmosis.


Subject(s)
Metal Nanoparticles , Toxoplasma , Toxoplasmosis , Humans , Interleukin-6 , Leydig Cells , Male , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/toxicity , Silver/toxicity , Testosterone , Tumor Necrosis Factor-alpha
8.
Chem Biol Interact ; 361: 109969, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35526601

ABSTRACT

Leishmaniasis is a group of chronic parasitic diseases in humans caused by species of the Leishmania genus. Current treatments have high toxicity, cost, duration, limited effectiveness, significantly complex administration, and drug-resistant strains. These factors highlight the importance of research into new therapies that use drugs without toxic effects. Solidagenone (SOL), the main labdane diterpene isolated from the plant Solidago chilensis, has anti-inflammatory, gastroprotective, antioxidant, tissue repair-inducing effects, suggesting a role in novel drug development. This study investigates in vivo mechanism action of SOL treatment in L. amazonensis-infected BALB/c mice. SOL was isolated from the roots of S. chilensis, and L. amazonensis-infected mice were treated daily with SOL (10, 50, 100 mg/kg) by gavage for 30 days. Gastric (NAG, MPO), hepatic (AST, ALT), systemic (body weight, NO) toxicity, leishmanicidal activity (lesion size, parasite burden), cell profile (macrophage, neutrophil infiltration), antioxidant (ABTS, NBT, NO), oxidant parameters (FRAP, ABTS), Th1, Th2, Th17 cytokines (CBA), collagen deposition (picrosirius), arginase, iNOS, NF-kB, and NRF2 (immunofluorescence) were evaluated. In vivo results showed SOL-treatment did not induce gastric, hepatic, or systemic toxicity in L. amazonensis-infected mice. SOL was able to reduce the lesion size and parasite load at the site of infection, increasing macrophage infiltration and neutrophil migration, exerting a balance in antioxidant (increased ABTS, NBT reduction, and NO), oxidative (increased FRAP and ABTS), and anti-inflammatory responses (reduced TNF-α, IFN-γ and increased IL-6, IL-17 production), and inducing arginase, iNOS, NF-kB, NRF2 and collagen deposition (type III), favoring wound healing and accelerating tissue repair at the site injury.


Subject(s)
Furans , Leishmaniasis, Cutaneous , Naphthalenes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arginase/metabolism , Furans/pharmacology , Leishmania , Leishmaniasis, Cutaneous/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Naphthalenes/pharmacology , Wound Healing
9.
Microbes Infect ; 24(5): 104971, 2022.
Article in English | MEDLINE | ID: mdl-35341976

ABSTRACT

Owing to the serious adverse effects caused by pyrimethamine and sulfadiazine, the drugs commonly used to treat toxoplasmosis, there is a need for treatment alternatives for this disease. Nanotechnology has enabled significant advances toward this goal. This study was conducted to evaluate the activity of biogenic silver nanoparticles (AgNp-Bio) in RAW 264.7 murine macrophages infected with the RH strain of Toxoplasma gondii. The macrophages were infected with T. gondii tachyzoites and then treated with various concentrations of AgNp-Bio. The cells were evaluated by microscopy, and culture supernatants were collected for ELISA determination of their cytokine concentration. Treatment with 6 µM AgNp-Bio reduced the infection and parasite load in infected RAW 264.7 macrophages without being toxic to the cells. The treatment also induced the synthesis of reactive oxygen species and tumor necrosis factor-alpha (both pro-inflammatory mediators), which resulted in ultrastructural changes in the tachyzoites and their intramacrophagic destruction. Our findings suggest that AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and pro-inflammatory mechanisms and may be a potential alternative treatment for toxoplasmosis.


Subject(s)
Macrophages , Metal Nanoparticles , Silver , Toxoplasmosis , Animals , Cell Proliferation , Macrophages/drug effects , Macrophages/parasitology , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Silver/pharmacology , Toxoplasma , Toxoplasmosis/drug therapy , Tumor Necrosis Factor-alpha/metabolism
10.
J Biomol Struct Dyn ; 40(17): 8040-8055, 2022 10.
Article in English | MEDLINE | ID: mdl-33769210

ABSTRACT

Leishmaniasis is a group of neglected diseases caused by parasites of the Leishmania genus. The treatment of Leishmaniasis represents a great challenge, because the available drugs present high toxicity and none of them is fully effective. Caryocar is a botanical genus rich in phenolic compounds, which leaves extracts have already been described by its antileishmanial action. Thus, we investigated the effect of pulp and peel extracts of the Caryocar coriaceum fruit on promastigote and amastigote forms of Leishmania amazonensis. Both extracts had antipromastigote effect after 24, 48, and 72 h, and this effect was by apoptosis-like process induction, with reactive oxygen species (ROS) production, damage to the mitochondria and plasma membrane, and phosphatidylserine exposure. Knowing that the fruit extracts did not alter the viability of macrophages, we observed that the treatment reduced the infection of these cells. Thereafter, in the in vitro infection context, the extracts showed antioxidant proprieties, by reducing NO, ROS, and MDA levels. Besides, both peel and pulp extracts up-regulated Nrf2/HO-1/Ferritin expression and increase the total iron-bound in infected macrophages, which culminates in a depletion of available iron for L. amazonensis replication. In silico, the molecular modeling experiments showed that the three flavonoids presented in the C. coriaceum extracts can act as synergistic inhibitors of Leishmania proteins, and compete for the active site. Also, there is a preference for rutin at the active site due to its greater interaction binding strength.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Malpighiales , Animals , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Ferritins/metabolism , Ferritins/pharmacology , Ferritins/therapeutic use , Flavonoids/pharmacology , Fruit , Humans , Iron/metabolism , Leishmaniasis/drug therapy , Malpighiales/metabolism , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , Phosphatidylserines/metabolism , Phosphatidylserines/pharmacology , Phosphatidylserines/therapeutic use , Reactive Oxygen Species/metabolism , Rutin/pharmacology , Rutin/therapeutic use
11.
Front Cell Infect Microbiol ; 12: 1044665, 2022.
Article in English | MEDLINE | ID: mdl-36699729

ABSTRACT

Introduction: Leishmaniasis is a neglected tropical disease, with approximately 1 million new cases and 30,000 deaths reported every year worldwide. Given the lack of adequate medication for treating leishmaniasis, drug repositioning is essential to save time and money when searching for new therapeutic approaches. This is particularly important given leishmaniasis's status as a neglected disease. Available treatments are still far from being fully effective for treating the different clinical forms of the disease. They are also administered parenterally, making it challenging to ensure complete treatment, and they are extremely toxic, in some cases, causing death. Triclabendazole (TCBZ) is a benzimidazole used to treat fasciolosis in adults and children. It presents a lower toxicity profile than amphotericin B (AmpB) and is administered orally, making it an attractive candidate for treating other parasitoses. The mechanism of action for TCBZ is not yet well understood, although microtubules or polyamines could potentially act as a pharmacological target. TCBZ has already shown antiproliferative activity against T. cruzi, T. brucei, and L. infantum. However, further investigations are still necessary to elucidate the mechanisms of action of TCBZ. Methods: Cytotoxicity assay was performed by MTT assay. Cell inhibition (CI) values were obtained according to the equation CI = (O.D treatment x 100/O.D. negative control). For Infection evaluation, fixated cells were stained with Hoechst and read at Operetta High Content Imaging System (Perkin Elmer). For growth curves, cell culture absorbance was measured daily at 600 nm. For the synergism effect, Fractional Inhibitory Concentrations (FICs) were calculated for the IC50 of the drugs alone or combined. Mitochondrial membrane potential (DYm), cell cycle, and cell death analysis were evaluated by flow cytometry. Reactive oxygen species (ROS) and lipid quantification were also determined by fluorimetry. Treated parasites morphology and ultrastructure were analyzed by electron microscopy. Results: The selectivity index (SI = CC50/IC50) of TCBZ was comparable with AmpB in promastigotes and amastigotes of Leishmania amazonensis. Evaluation of the cell cycle showed an increase of up to 13% of cells concentrated in S and G2, and morphological analysis with scanning electron microscopy showed a high frequency of dividing cells. The ultrastructural analysis demonstrated large cytoplasmic lipid accumulation, which could suggest alterations in lipid metabolism. Combined administration of TCBZ and AmpB demonstrated a synergistic effect in vitro against intracellular amastigote forms with cSFICs of 0.25. Conclusions: Considering that TCBZ has the advantage of being inexpensive and administrated orally, our results suggest that TCBZ, combined with AmpB, is a promising candidate for treating leishmaniasis with reduced toxicity.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Child , Humans , Amphotericin B , Triclabendazole/pharmacology , Triclabendazole/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis/parasitology , Lipids/pharmacology
12.
J Biomol Struct Dyn ; 40(7): 3213-3222, 2022 04.
Article in English | MEDLINE | ID: mdl-33183184

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Humans , Leishmaniasis/drug therapy , Molecular Docking Simulation , Thiohydantoins/pharmacology
13.
Anticancer Agents Med Chem ; 22(8): 1592-1600, 2022.
Article in English | MEDLINE | ID: mdl-34382528

ABSTRACT

BACKGROUND: Conventional therapies for breast cancer are still a challenge due to cytotoxic drugs not being highly effective with significant adverse effects. Thiohydantoins are biologically active heterocyclic compounds reported for several biological activities, including anticarcinogenic properties, etc. This work aims to assess the use of thiohydantoin as a potential antitumor agent against MCF-7 breast cancer cells. METHODS: MTT and neutral red assays were used to assess the possible cytotoxic activity of compounds against MCF-7 cells. Cell volume measurement and analysis were performed by flow cytometry. Fluorescence analysis was carried out to determine patterns of cell death induced by thiohydantoins. RESULTS: The treatment with micromolar doses of thiohydantoins promoted a decrease in the viability of MCF-7 breast tumor cells. An increase in the ROS and NO production, reduction in cell volume, loss of membrane integrity, mitochondrial depolarization, and increased fluorescence for annexin-V and caspase-3 were also observed. These findings indicate cell death by apoptosis and increased autophagic vacuoles, stopping the cell cycle in the G1/ G0 phase. CONCLUSION: Our results indicate that thiohydantoins are cytotoxic to breast tumor cells, and this effect is linked to the increase in ROS production. This phenomenon changes tumorigenic pathways, which halt the cell cycle in G1/G0. This is an essential checkpoint for DNA errors, which may have altered how cells produce energy, causing a decrease in mitochondrial viability and thus leading to the apoptotic process. Furthermore, the results indicate increased autophagy, a vital process linked to a decrease in lysosomal viability and thus considered a cell death and tumor suppression mechanism.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Humans , MCF-7 Cells , Reactive Oxygen Species/metabolism , Thiohydantoins/pharmacology
14.
Chem Biol Interact ; 351: 109690, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34637778

ABSTRACT

The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.


Subject(s)
Thiohydantoins/pharmacology , Trypanocidal Agents/pharmacology , ADAM17 Protein/metabolism , Animals , Arginase/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Leishmania/drug effects , Leishmania/enzymology , Mice , Mitochondria/drug effects , Molecular Docking Simulation , Protozoan Proteins/metabolism , Sheep , Thiohydantoins/chemical synthesis , Thiohydantoins/metabolism , Thiohydantoins/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity , Tumor Necrosis Factor-alpha/metabolism
15.
J Pharm Pharmacol ; 74(1): 77-87, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34791343

ABSTRACT

OBJECTIVES: This study aimed to evaluate the in vitro anti-Leishmania activity of chalcone-rich three extracts (LDR, LHR and LMR) from Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima against L. amazonensis. Also, the immunomodulatory and antioxidant capacity was assessed. METHODS: Successive extraction with hexane, dichloromethane and methanol were performed to obtain LHR, LDR and LMR extracts from L. cultratus roots, which were characterized by 1H NMR. Promastigotes, amastigotes and peritoneal macrophages were exposed to crescent concentrations of the three extracts, and after incubation, the inhibition rates were determined to both types of cells, and morphological analyses were performed on the parasite. The immunomodulatory activity was determined against stimulated macrophages. KEY FINDINGS: LDR, LHR and LMR inhibited promastigote cell growth (IC50 0.62 ± 0.3, 0.94 ± 0.5 and 1.28 ± 0.73 µg/ml, respectively) and reduced the number of amastigotes inside macrophages (IC50 1.36 ± 0.14, 1.54 ± 0.26 and 4.09 ± 0.88 µg/ml, respectively). The cytotoxicity against murine macrophages resulted in a CC50 of 13.12 ± 1.92, 92.93 ± 9.1 and >300 µg/ml, resulting in high selectivity index to promastigotes and amastigotes. The extracts also inhibited the nitric oxide secretion in RAW 264.7 macrophages. The antioxidant capacity resulted in a higher scavenger LMR ability. CONCLUSIONS: These results suggest that L. cultratus extracts have anti-Leishmania potential, are non-toxic, and immunosuppress macrophages in vitro.


Subject(s)
Chalcone/pharmacology , Fabaceae , Leishmania/drug effects , Leishmaniasis/drug therapy , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Immunologic Factors/pharmacology , Mice , Plant Roots
16.
Curr Drug Metab ; 22(13): 1035-1064, 2021.
Article in English | MEDLINE | ID: mdl-34825868

ABSTRACT

The goal of the biotransformation process is to develop structural changes and generate new chemical compounds, which can occur naturally in mammalian and microbial organisms, such as filamentous fungi, and represent a tool to achieve enhanced bioactive compounds. Cunninghamella spp. is among the fungal models most widely used in biotransformation processes at phase I and II reactions, mimicking the metabolism of drugs and xenobiotics in mammals and generating new molecules based on substances of natural and synthetic origin. Therefore, the goal of this review is to highlight the studies involving the biotransformation of Cunninghamella species between January 2015 and March 2021, in addition to updating existing studies to identify the similarities between the human metabolite and Cunninghamella patterns of active compounds, with related advantages and challenges, and providing new tools for further studies in this scope.


Subject(s)
Biological Factors , Biotransformation , Cunninghamella/physiology , Xenobiotics , Biological Factors/metabolism , Biological Factors/pharmacology , Drug Discovery/methods , Fungi/physiology , Humans , Metabolism , Models, Biological , Xenobiotics/metabolism , Xenobiotics/pharmacology
17.
Front Cell Infect Microbiol ; 11: 687633, 2021.
Article in English | MEDLINE | ID: mdl-34660334

ABSTRACT

Cutaneous leishmaniasis is a zoonotic infectious disease broadly distributed worldwide, causing a range of diseases with clinical outcomes ranging from self-healing infections to chronic disfiguring disease. The effective immune response to this infection is yet to be more comprehensively understood and is fundamental for developing drugs and vaccines. Thus, we used experimental models of susceptibility (BALB/c) and partial resistance (C57BL/6) to Leishmania amazonensis infection to investigate the local profile of mediators involved in the development of cutaneous leishmaniasis. We found worse disease outcome in BALB/c mice than in C57BL/6 mice, with almost 15 times higher parasitic load, ulcerated lesion formation, and higher levels of IL-6 in infected paws. In contrast, C57BL/6 presented higher levels of IFN-γ and superoxide anion (•O2-) after 11 weeks of infection and no lesion ulcerations. A peak of local macrophages appeared after 24 h of infection in both of the studied mice strains, followed by another increase after 240 h, detected only in C57BL/6 mice. Regarding M1 and M2 macrophage phenotype markers [iNOS, MHC-II, CD206, and arginase-1 (Arg-1)], we found a pronounced increase in Arg-1 levels in BALB/c after 11 weeks of infection, whereas C57BL/6 showed an initial predomination of markers from both profiles, followed by an M2 predominance, coinciding with the second peak of macrophage infiltration, 240 h after the infection. Greater deposition of type III collagen and lesion resolution was also observed in C57BL/6 mice. The adoptive transfer of macrophages from C57BL/6 to infected BALB/c at the 11th week showed a reduction in both edema and the number of parasites at the lesion site, in addition to lower levels of Arg-1. Thus, C57BL/6 mice have a more effective response against L. amazonensis, based on a balance between inflammation and tissue repair, while BALB/c mice have an excessive Arg-1 production at late infection. The worst evolution seems to be influenced by recruitment of Arg-1 related macrophages, since the adoptive transfer of macrophages from C57BL/6 mice to BALB/c resulted in better outcomes, with lower levels of Arg-1.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Animals , Arginase , Macrophages , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
18.
Acta Trop ; 222: 106070, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34331897

ABSTRACT

Toxoplasma gondii is a protozoan parasite that can cause severe and debilitating diseases, especially in immunocompromised individuals. The available treatment is based on drugs that have low efficacy, high toxicity, several adverse effects, and need long periods of treatment. Thus, the search for therapeutic alternatives is urgently needed. Biogenic silver nanoparticles (AgNp-Bio) have been associated with several biological effects, as antiproliferative, pro-apoptotic, antioxidant, antiviral, antifungal, and antiprotozoal activity. Thus, the objective was evaluating AgNp-Bio effect on HeLa cells infected with T. gondii (RH strain). First, nontoxic AgNp-Bio concentrations for HeLa cells (1.5 - 6 µM) were determined, which were tested on cells infected with T. gondii. A significant reduction in infection, proliferation, and intracellular parasitic load was observed, also an increase in ROS and IL-6. Additionally, the evaluation of the action mechanisms of the parasite showed that AgNp-Bio acts directly on tachyzoites, inducing depolarization of the mitochondrial membrane, ROS increase, and lipid bodies accumulation, as well as triggering an autophagic process, causing damage to the parasite membrane, and phosphatidylserine exposure. Based on this, it was inferred that AgNp-Bio affects T. gondii by inducing immunomodulation and microbicidal molecules produced by infected cells, and acts on parasites, by inducing autophagy and apoptosis.


Subject(s)
Autophagy , Metal Nanoparticles , Silver , Toxoplasma , Toxoplasmosis , Apoptosis , Cell Proliferation , HeLa Cells , Humans , Silver/pharmacology
19.
Parasitology ; 148(12): 1447-1457, 2021 10.
Article in English | MEDLINE | ID: mdl-34187608

ABSTRACT

Toxoplasma gondii is the causative agent of toxoplasmosis, and an important problem of public health. The current treatment for toxoplasmosis is the combination of pyrimethamine and sulphadiazine, which do not act in the chronic phase of toxoplasmosis and have several side-effects. This study evaluated the anti-T. gondii activity and potential mechanism of Moringa oleifera seeds' aqueous extract in vitro. The concentration of M. oleifera extract in HeLa cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assays. The presence of T. gondii was assessed by quantitative polymerase chain reaction and toluidine blue staining. Pyrimethamine and sulphadiazine were used as drug controls. Modifications in T. gondii morphology and ultrastructure were observed by electron microscopy. In vitro, the M. oleifera extract had no toxic effect on HeLa cells at concentrations below 50 µg mL−1. Moringa oleifera extract inhibits T. gondii invasion and intracellular proliferation with similar results for sulphadiazine + pyrimethamine, and also shows cellular nitric oxide production at a concentration of 30 µg mL−1. Electron microscopy analyses indicated structural and ultrastructural modifications in tachyzoites after treatment. We also observed an increase in reactive oxygen species production and a loss of mitochondrial membrane integrity. Nile Red staining assays demonstrated a lipid accumulation. Annexin V­fluorescein isothiocyanate and propidium iodide staining demonstrated that the main action of M. oleifera extract in T. gondii tachyzoites was compatible with late apoptosis. In conclusion, M. oleifera extract has anti-T. gondii activity in vitro and might be a promising substance for the development of a new anti-T. gondii drug.


Subject(s)
Moringa oleifera , Toxoplasma , Toxoplasmosis , Apoptosis , HeLa Cells , Humans , Moringa oleifera/chemistry , Toxoplasmosis/drug therapy
20.
Phytomedicine ; 85: 153536, 2021 May.
Article in English | MEDLINE | ID: mdl-33765552

ABSTRACT

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Currently, the treatment has limited effectiveness and high toxicity, is expensive, requires long-term treatment, induces significant side effects, and promotes drug resistance. Thus, new therapeutic strategies must be developed to find alternative compounds with high efficiency and low cost. Solidagenone (SOL), one of the main constituents of Solidago chilensis, has shown gastroprotective, anti-inflammatory and immunomodulatory effects. PURPOSE: This study assessed the in vitro effect of SOL on promastigotes and Leishmania amazonensis-infected macrophages, as well its microbicide and immunomodulatory mechanisms. METHODS: SOL was isolated from the roots of S. chilensis, 98% purity, and identified by chromatographic methods, and the effect of SOL on leishmanicidal activity against promastigotes in vitro, SOL-induced cytotoxicity in THP-1, J774 cells, sheep erythrocytes, and L. amazonensis-infected J774 macrophages, and the mechanisms of death involved in this action were evaluated. RESULTS: In silico predictions showed good drug-likeness potential for SOL with high oral bioavailability and intestinal absorption. SOL treatment (10-160 µM) inhibited promastigote proliferation 24, 48, and 72 h after treatment. After 24 h of treatment, SOL at the IC50 (34.5 µM) and 2 × the IC50 (69 µM) induced several morphological and ultrastructural changes in promastigotes, altered the cell cycle and cellular volume, increased phosphatidylserine exposure on the cell surface, induced the loss of plasma membrane integrity, increased the reactive oxygen species (ROS) level, induced loss of mitochondrial integrity (characterized by an apoptosis-like process), and increased the number of lipid droplets and autophagic vacuoles. Additionally, SOL induced low cytotoxicity in J774 murine macrophages (CC50 of 1587 µM), THP-1 human monocytes (CC50 of 1321 µM), and sheep erythrocytes. SOL treatment reduced the percentage of L. amazonensis-infected macrophages and the number of amastigotes per macrophage (IC50 9.5 µM), reduced TNF-α production and increased IL-12p70, ROS and nitric oxide (NO) levels. CONCLUSION: SOL showed in vitro leishmanicidal effects against the promastigotes by apoptosis-like mechanism and amastigotes by reducing TNF-α and increasing IL-12p70, ROS, and NO levels, suggesting their potential as a candidate for use in further studies on the design of antileishmanial drugs.


Subject(s)
Apoptosis/drug effects , Furans/pharmacology , Leishmania/drug effects , Macrophages/drug effects , Naphthalenes/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Cell Line , Humans , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Mitochondria/pathology , Nitric Oxide/metabolism , Phosphatidylserines/metabolism , Plant Roots/chemistry , Reactive Oxygen Species/metabolism , Sheep , Solidago/chemistry , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL