Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731932

ABSTRACT

The serious drawback underlying the biological annotation of whole-genome sequence data is the p >> n problem, which means that the number of polymorphic variants (p) is much larger than the number of available phenotypic records (n). We propose a way to circumvent the problem by combining a LASSO logistic regression with deep learning to classify cows as susceptible or resistant to mastitis, based on single nucleotide polymorphism (SNP) genotypes. Among several architectures, the one with 204,642 SNPs was selected as the best. This architecture was composed of two layers with, respectively, 7 and 46 units per layer implementing respective drop-out rates of 0.210 and 0.358. The classification of the test data resulted in AUC = 0.750, accuracy = 0.650, sensitivity = 0.600, and specificity = 0.700. Significant SNPs were selected based on the SHapley Additive exPlanation (SHAP). As a final result, one GO term related to the biological process and thirteen GO terms related to molecular function were significantly enriched in the gene set that corresponded to the significant SNPs. Our findings revealed that the optimal approach can correctly predict susceptibility or resistance status for approximately 65% of cows. Genes marked by the most significant SNPs are related to the immune response and protein synthesis.


Subject(s)
Deep Learning , Mastitis, Bovine , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Cattle , Mastitis, Bovine/genetics , Animals , Female , Whole Genome Sequencing/methods , Genetic Predisposition to Disease , Genotype
2.
Cancers (Basel) ; 15(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36765737

ABSTRACT

The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.

3.
J Appl Genet ; 64(1): 135-139, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36417168

ABSTRACT

Spinal muscular atrophy is a severe neuromuscular disorder with an autosomal recessive inheritance pattern. The disease-causing gene is SMN1, and its paralogue, SMN2, is a disease course modifier. Both genes SMN1 and SMN2 show over 99.9% sequence identity and a high rate of crossing over in the genomic region. Due to this reason, SMN1/SMN2 is usually excluded from the whole-genome sequencing (WGS) analysis and investigated with traditional methods, such as MLPA and qPCR. Recently, novel bioinformatic algorithms dedicated to analyzing this particular genomic region have been developed. Here, we analyze the SMN1/SMN2 genomic region with a dedicated program, SMNCopyNumberCaller. We report a similar prevalence of SMN1 gene deletion carrier status (1 per 41 people) to published data from the Polish population (1 per 35 people). Additionally, SMNCopyNumberCaller can identify SMN2 CNVs and SMN2Δ7-8 present in 153 healthy Polish individuals. Two other programs for the CNV analysis in standard genomic regions were not able to provide reliable results. Using WGS-based tools for SMN1/2 genomic region analysis is not only an efficient method in terms of time but will also enable more complex analysis such screening for markers related with a silent carrier status and identification of further genetic modifiers. Although still an experimental method, soon WGS-based SMN1/SMN2 carrier identification may become a standard method for patients screened with WGS for other purposes.


Subject(s)
Muscular Atrophy, Spinal , Humans , Poland , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Heterozygote , Inheritance Patterns , Survival of Motor Neuron 1 Protein/genetics
4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955824

ABSTRACT

Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet.


Subject(s)
COVID-19 , Cardiovascular Diseases , COVID-19/genetics , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Humans , INDEL Mutation , Lung , Polymorphism, Single Nucleotide
5.
Animals (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34438899

ABSTRACT

Heritabilities of workability (WT) traits-milking speed (MS) and temperament (MT)-as well as genetic and phenotypic correlations between these traits in the population of Polish Holstein-Friesian (PHF) cows were estimated. The estimation of genetic parameters was performed twice: first with the use of pedigree data; and second with the use of pedigree and genomic data. Phenotypic data from routinely conducted MS and MT evaluations for 1,045,511 cows born from 2004 to 2013 were available; the cows were evaluated from 2011 to 2015. The main dataset was reduced based on imposed restrictions (e.g., on age of calving, stage of lactation and day of first trial milking). The dataset prepared in this manner comprised 391,615 cows. It was then reduced to daughters of 10% randomly selected sires for computational reasons. Finally, for genetic parameter estimation, 13,280 records of cows were used. The linear observation model included additive random effects of animal, fixed effects of herd-year-season of calving subclass (HYS) and lactation phase, fixed regressions on cow age at calving and the percent of HF breed genes in the cow genotype. Heritabilities estimated based on pedigree data were 0.12 (±0.0067) for MS and 0.08 (±0.0063) for MT, the genetic correlation between MS and MT was estimated at 0.05 (±0.0002) and the phenotypic correlation coefficient was estimated at 0.14 (±0.0004). The inclusion of genomic information of sire bulls had no clear effect on the size of the estimated WT genetic parameters. The heritabilities of MS and MT were 0.11 (±0.0065) and 0.09 (±0.0012), respectively. The genetic and phenotypic correlation coefficients were 0.07 (±0.0003) and 0.12 (±0.0005), respectively. The sizes of the obtained heritabilities of WT and of the genetic and phenotypic correlation between these traits indicate the possibility of effective population improvement for both WT traits.

SELECTION OF CITATIONS
SEARCH DETAIL