Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(13): eadk4423, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536911

ABSTRACT

DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.


Subject(s)
Colonic Neoplasms , Enhancer of Zeste Homolog 2 Protein , Histones , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Histones/metabolism , Methylation , Signal Transduction , Transcription Factor AP-1/metabolism
2.
iScience ; 26(7): 107095, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456850

ABSTRACT

Non-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically. IHC validation using primary sample tissue microarrays confirmed a pronounced positive association between CD8+ T cell tumor infiltration and the interferon-associated targets, CCL5 and MDA5. We next extended these findings to the assessment of clinical trial biopsies from patients with advanced non-small-cell lung cancer treated with epigenetic therapy with and without concurrent immunotherapy. These analyses revealed treatment-associated increases in both CD8+ T cell intratumoral infiltration and microenvironment CCL5 staining intensity.

3.
Clin Cancer Res ; 29(11): 2052-2065, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36928921

ABSTRACT

PURPOSE: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy. PATIENTS AND METHODS: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible. Preplanned correlative analysis was performed to characterize peripheral immune dynamics and global DNA methylation, transcriptome, and immune infiltration dynamics of patient tumors. RESULTS: Safety run-in enrolled 6 patients and phase II enrolled 15 patients before the trial was closed for futility. No dose-limiting toxicity was observed. Four patients, with best response of stable disease (SD), exhibited extended tumor control (8-11 months) and survival (>14 months). Correlative analysis revealed lack of DNA demethylation in tumors after 2 cycles of treatment. Increased peripheral immune activation and immune infiltration in tumors after treatment correlated with progression-free survival and SD. Furthermore, high IL6 and IL8 levels in the patients' plasma was associated with short survival. CONCLUSIONS: No RECIST responses were observed after combination therapy in this trial. Although we could not detect the anticipated tumor-intrinsic effects of guadecitabine, the addition of hypomethylating agent to ICI therapy induced immune activation in a few patients, which associated with longer patient survival.


Subject(s)
Antineoplastic Agents , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/secondary , B7-H1 Antigen , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Neoplasm Recurrence, Local/drug therapy
4.
Proc Natl Acad Sci U S A ; 119(27): e2123227119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35759659

ABSTRACT

DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , DNA-Cytosine Methylases , Leukemia, Myeloid, Acute , Membrane Proteins , Poly(ADP-ribose) Polymerase Inhibitors , Tumor Suppressor Protein p53 , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA-Cytosine Methylases/antagonists & inhibitors , Homologous Recombination/genetics , Humans , Inflammasomes/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Membrane Proteins/immunology , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Eur J Hum Genet ; 30(8): 889-898, 2022 08.
Article in English | MEDLINE | ID: mdl-35577935

ABSTRACT

COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virus Replication
6.
Cancer Res ; 81(20): 5176-5189, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34433584

ABSTRACT

Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.


Subject(s)
Azacitidine/pharmacology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/genetics , Repetitive Sequences, Nucleic Acid , Tumor Suppressor Protein p53/metabolism , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
7.
Proc Natl Acad Sci U S A ; 117(30): 17785-17795, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32651270

ABSTRACT

Poly(ADP ribose) polymerase inhibitors (PARPi) have efficacy in triple negative breast (TNBC) and ovarian cancers (OCs) harboring BRCA mutations, generating homologous recombination deficiencies (HRDs). DNA methyltransferase inhibitors (DNMTi) increase PARP trapping and reprogram the DNA damage response to generate HRD, sensitizing BRCA-proficient cancers to PARPi. We now define the mechanisms through which HRD is induced in BRCA-proficient TNBC and OC. DNMTi in combination with PARPi up-regulate broad innate immune and inflammasome-like signaling events, driven in part by stimulator of interferon genes (STING), to unexpectedly directly generate HRD. This inverse relationship between inflammation and DNA repair is critical, not only for the induced phenotype, but also appears as a widespread occurrence in The Cancer Genome Atlas datasets and cancer subtypes. These discerned interactions between inflammation signaling and DNA repair mechanisms now elucidate how epigenetic therapy enhances PARPi efficacy in the setting of BRCA-proficient cancer. This paradigm will be tested in a phase I/II TNBC clinical trial.


Subject(s)
Homologous Recombination/drug effects , Immunity, Innate/drug effects , Signal Transduction/drug effects , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cell Line, Tumor , Computational Biology , DNA Modification Methylases/antagonists & inhibitors , DNA Repair/drug effects , Fanconi Anemia/genetics , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Interferons/metabolism , Membrane Proteins/metabolism , Models, Biological , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism
8.
Nature ; 579(7798): 284-290, 2020 03.
Article in English | MEDLINE | ID: mdl-32103175

ABSTRACT

Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.


Subject(s)
Epigenesis, Genetic , Genetic Therapy , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/therapy , Tumor Microenvironment , Animals , Azacitidine/pharmacology , Benzamides/pharmacology , Cell Differentiation , Cell Movement/drug effects , Chemotherapy, Adjuvant , Disease Models, Animal , Down-Regulation/drug effects , Mice , Myeloid-Derived Suppressor Cells/cytology , Neoplasm Metastasis/therapy , Neoplasms/surgery , Pyridines/pharmacology , Receptors, CCR2/genetics , Receptors, Interleukin-8B/genetics , Tumor Microenvironment/drug effects
9.
Nat Rev Clin Oncol ; 17(2): 75-90, 2020 02.
Article in English | MEDLINE | ID: mdl-31548600

ABSTRACT

The past decade has seen the emergence of immunotherapy as a prime approach to cancer treatment, revolutionizing the management of many types of cancer. Despite the promise of immunotherapy, most patients do not have a response or become resistant to treatment. Thus, identifying combinations that potentiate current immunotherapeutic approaches will be crucial. The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed key roles of epigenetic processes in regulating immune cell function and mediating antitumour immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic therapies and detail current efforts to translate this knowledge into clinical benefit for patients.


Subject(s)
Epigenesis, Genetic/immunology , Immunotherapy/methods , Neoplasms/therapy , Tumor Microenvironment/genetics , Epigenomics/trends , Humans , Medical Oncology/trends , Neoplasms/immunology
10.
Proc Natl Acad Sci U S A ; 116(45): 22609-22618, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31591209

ABSTRACT

A minority of cancers have breast cancer gene (BRCA) mutations that confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis), but the role for PARPis in BRCA-proficient cancers is not well established. This suggests the need for novel combination therapies to expand the use of these drugs. Recent reports that low doses of DNA methyltransferase inhibitors (DNMTis) plus PARPis enhance PARPi efficacy in BRCA-proficient AML subtypes, breast, and ovarian cancer open up the possibility that this strategy may apply to other sporadic cancers. We identify a key mechanistic aspect of this combination therapy in nonsmall cell lung cancer (NSCLC): that the DNMTi component creates a BRCAness phenotype through downregulating expression of key homologous recombination and nonhomologous end-joining (NHEJ) genes. Importantly, from a translational perspective, the above changes in DNA repair processes allow our combinatorial PARPi and DNMTi therapy to robustly sensitize NSCLC cells to ionizing radiation in vitro and in vivo. Our combinatorial approach introduces a biomarker strategy and a potential therapy paradigm for treating BRCA-proficient cancers like NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , DNA Modification Methylases/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Animals , Antineoplastic Agents , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Combined Modality Therapy , DNA Modification Methylases/metabolism , DNA Repair/drug effects , DNA Repair/radiation effects , Drug Therapy, Combination , Female , Homologous Recombination/drug effects , Homologous Recombination/radiation effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Phthalazines/administration & dosage , Radiation, Ionizing
11.
Cancer Cell ; 35(4): 633-648.e7, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30956060

ABSTRACT

UHRF1 facilitates the establishment and maintenance of DNA methylation patterns in mammalian cells. The establishment domains are defined, including E3 ligase function, but the maintenance domains are poorly characterized. Here, we demonstrate that UHRF1 histone- and hemimethylated DNA binding functions, but not E3 ligase activity, maintain cancer-specific DNA methylation in human colorectal cancer (CRC) cells. Disrupting either chromatin reader activity reverses DNA hypermethylation, reactivates epigenetically silenced tumor suppressor genes (TSGs), and reduces CRC oncogenic properties. Moreover, an inverse correlation between high UHRF1 and low TSG expression tracks with CRC progression and reduced patient survival. Defining critical UHRF1 domain functions and its relationship with CRC prognosis suggests directions for, and value of, targeting this protein to develop therapeutic DNA demethylating agents.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Colorectal Neoplasms/enzymology , DNA Methylation , Epigenesis, Genetic , Ubiquitin-Protein Ligases/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Caco-2 Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , CpG Islands , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Histones/genetics , Histones/metabolism , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mutation , Neoplasm Metastasis , PHD Zinc Fingers , Prognosis , Time Factors , Ubiquitin-Protein Ligases/genetics
13.
J Am Vet Med Assoc ; 253(1): 10, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29911949
15.
J Am Vet Med Assoc ; 252(3): 256, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29346047
16.
J Am Vet Med Assoc ; 252(1): 12, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29244596
17.
Proc Natl Acad Sci U S A ; 114(51): E10981-E10990, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29203668

ABSTRACT

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


Subject(s)
Epigenesis, Genetic/drug effects , Immunomodulation/drug effects , Interferon Type I/metabolism , Ovarian Neoplasms/etiology , Ovarian Neoplasms/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents, Immunological , Azacitidine/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Tumor Burden/drug effects , Tumor Burden/immunology , Xenograft Model Antitumor Assays
18.
Cell ; 171(6): 1284-1300.e21, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195073

ABSTRACT

Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/ß-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Drug Therapy, Combination , Lung Neoplasms/therapy , Tumor Escape/drug effects , Animals , Antigen Presentation/drug effects , Antineoplastic Agents/therapeutic use , Azacitidine/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , T-Lymphocytes/immunology , Transcriptome , Tumor Microenvironment
20.
J Am Vet Med Assoc ; 251(9): 978, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29035650
SELECTION OF CITATIONS
SEARCH DETAIL