Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(54): 6877-6880, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38873969

ABSTRACT

Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.

3.
Dalton Trans ; 53(25): 10499-10510, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38841816

ABSTRACT

The burgeoning interest in the field of molecular magnetism is to perceive the high magnetic anisotropy in different geometries of metal complexes and hence to draw a magneto-structural correlation. Despite a handful of examples to exemplify the magnetic anisotropy in various coordination geometries of mononuclear complexes, the magnetic anisotropies for two different coordination geometries are underexplored. Employing an appropriate synthetic strategy utilizing the ligand LH2 [2,2'-{(1E,1'E)-pyridine2,6-diyl-bis(methaneylylidine)}-bis(azaneylylidine)diphenol] and cobalt halide salts in a 1 : 2 stoichiometric ratio in the presence of triethylamine allowed us to report a new family of dinuclear cobalt complexes [CoII2X2(L)(P)(Q)]·S with varying terminal halides [X = Cl, P = CH3CN, Q = H2O, S = H2O (1), X = Br, P = CH3CN, Q = H2O, S = H2O (2), X = I, P = CH3CN, and Q = CH3CN (3)]. All these complexes are characterized through single crystal X-ray crystallography, which reveals their crystallization in the monoclinic system P21/n space group with nearly identical structural features. These complexes share vital components, including Co(II) centers, a fully deprotonated ligand [L]2-, halide ions, and solvent molecules. The [L]2- ligand contains two Co(II) centers, where phenolate oxygen atoms bridge the Co(II) centers, forming a Co2O2 four-membered ring. Co1 demonstrates a distorted pentagonal-bipyramidal geometry with axial positions for solvent molecules, while Co2 displays a distorted tetrahedral geometry involving phenolate oxygen atoms and halide ions. Temperature-dependent dc magnetic susceptibility measurements were conducted on 1-3 within a range of 2 to 300 K at 1 kOe. The χmT vs. T plots exhibit similar trends, with χmT values at 300 K higher than the spin-only value, signifying a significant orbital contribution. As the temperature decreases, χmT decreases smoothly in all the complexes; however, no clear saturation at low temperatures is observed. Field-dependent magnetization measurements indicate a rapid increase below 20 kOe, with no hysteresis and a low magnetic blocking temperature. DFT and CASSCF/NEVPT2 theoretical calculations were performed to perceive the magnetic interaction and single-ion anisotropies of Co(II) ions in various ligand-field environments.

4.
Nat Prod Res ; : 1-8, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940013

ABSTRACT

The study explored Simarouba glauca DC. for mosquito larvicidal potential by performing bioactivity-guided chemical investigation of its root extract resulting in isolation of the known bioactive metabolite glaucarubinone (1). Mosquito larvicidal activity of glaucarubinone (1) against the three vector species viz. Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined using a modified WHO 2005 protocol. It was observed that Culex quinquefasciatus larvae were the most susceptible species with LC50 13.88 ppm and LC90 70.01 ppm followed by Aedes aegypti and Anopheles stephensi at 24 h of exposure. The mode of action as observed microscopically is the lysis of midgut and thorax cells of the third instar larvae. The crystal structure of the glaucarubinone (1) is reported for the first time using X-ray crystallography. This phytochemical product has the potential to act as a green alternative to existing chemical-based insecticides for integrated vector management.

5.
Dalton Trans ; 53(18): 7763-7774, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38619861

ABSTRACT

We have utilised the 4,6-di-tert-butyl resorcinol bis(diphenylphosphinite) (POCOP) ligand for exploring its coordination ability towards group 11 metal centres. The treatment of the bidentate ligand 1 with various coinage metal precursors afforded a wide range of structurally diverse complexes 2-12, depending upon the metal precursors used. This furnishes several multinuclear Cu(I) complexes with dimeric (2) and tetrameric cores (3, 4, and 5). The tetrameric stairstep complex 4 shows thermochromic behaviour, whereas the dimeric complex 2 and tetrameric complex 3 show luminescence properties at cryogenic temperatures. Interestingly, the halide substitution reaction of the dimeric complex 2 with KPPh2 produces a unique mixed phosphine-based tetrameric Cu(I) complex, 5. Treatment of the POCOP ligand with [CuBF4(CH3CN)4] in the presence of 2,2'-bipyridine afforded heteroleptic complex 6, consisting of tri- and tetra-coordinated cationic Cu(I) centres. Furthermore, we could also isolate cubane (8) and stairstep (9) complexes of Ag(I). The cationic Au(I) complex (12) was obtained from the dinuclear Au(I) complex of POCOP, 11. Complex 12 revealed the presence of a strong intramolecular aurophilic interaction with an Au⋯Au bond distance of 3.1143(9) Å. Subsequently, the photophysical properties of these complexes have been studied. All the complexes were characterised by single-crystal X-ray diffraction studies, routine NMR techniques, and mass spectroscopy.

6.
Inorg Chem ; 63(11): 4883-4897, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494956

ABSTRACT

The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(µ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.

7.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 310-313, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38456061

ABSTRACT

An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the crystal structure, weak C-H⋯O hydrogen bonds and π-π stacking inter-actions link the mol-ecules. The structure exhibits disorder of the mol-ecule.

8.
J Org Chem ; 89(4): 2480-2493, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38308648

ABSTRACT

Despite the inherent stability-enhancing benefits of dπ-pπ conjugation-induced aromaticity, metallaaromatic catalysts remain underutilized in this context, despite their reactivity with organic functionalities in stoichiometric reactions. We present a strategy for synthesizing a diverse range of iridaheteroaromatics, (L^L)IrIII(Cp*)I, including iridapyridylidene-indole, iridapyridene-indole, and iridaimidazole, via in situ deprotonation/metalation reactions utilizing [Cp*IrCl2]2 and the respective ligands. These catalysts exhibit enhanced σ-donor and π-acceptor properties, intrinsic σ-π continuum attributes, and versatile binding sites, contributing to stability through enhanced dπ-pπ conjugation-induced aromaticity. Spectroscopic data, X-ray crystallographic data, and density functional theory calculations confirm their aromaticity. These iridaheteroaromatics exhibit formidable catalytic ability across a spectrum of transformations under industrially viable conditions, notably excelling in highly selective cross alkylation and ß-alkylation of alcohols and an eco-friendly avenue for quinolone synthesis, achieving remarkably high turnover frequencies (TOFs). Additionally, this method extends to the self-condensation of bioalcohols like ethanol, n-butanol, and n-hexanol in water, replicating conditions frequently encountered in primary fermentation solutions. These iridaheteroaromatics exhibit strong catalytic activity with fast reaction rates, high TOFs, broad substrate compatibility, and remarkable selectivity, displaying their potential as robust catalysts in large-scale applications and emphasizing their practical significance beyond their structural and theoretical importance.

9.
Chemistry ; 30(16): e202303757, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38165894

ABSTRACT

Fluorine, the tiny robust atom, with its unique features has captured the attention of scientists in recent times, especially in drug discovery with its integration in small molecules, peptides, and proteins. However, studies to understand the 'fluorine effects' on the conformation of molecules that follow 'beyond the rule of 5' are in the infancy yet significant in molecular design and function. For the first time, using short hybrid peptide sequence as an appropriate model, we examined the substitution effect (size, stereoelectronic effect, and hydrogen bonding) using X-ray diffraction, 2D-NMR, and CD studies. The comparative study on their folding patterns with hydrogen-substituted analogs can provide valuable insights into fluorinated substrates' design.


Subject(s)
Fluorine , Protein Folding , Fluorine/chemistry , Peptides/chemistry , Molecular Conformation , Amino Acid Sequence , Hydrogen Bonding
10.
Small ; 20(13): e2306824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37975153

ABSTRACT

Inspired by the uranyl-imidazole interactions via nitrogen's (N's) of histidine residues in single helical protein assemblies with open framework geometry that allows through migration/coordination of metal ions. Here, preliminary components of a stable hydrogen-bonded organic framework (HOF) are designed to mimic the stable single helical open framework with imidazole residues available for Uranium (U) binding. The imidazolate-HOF (CSMCRIHOF2-S) is synthesized with solvent-directed H-bonding in 1D array and tuned hydrophobic CH-π interactions leading to single helix pattern having enhanced hydrolytic stability. De-solvation led CSMCRIHOF2-P with porous helical 1D channels are transformed in a freestanding thin film that showcased improved mass transfer and adsorption of uranyl carbonate. CSMCRIHOF2-P thin film can effectively extract ≈14.8 mg g-1 in 4 weeks period from natural seawater, with > 1.7 U/V (Uranium to Vanadium ratio) selectivity. This strategy can be extended for rational designing of hydrolytically stable, U selective HOFs to realize the massive potential of the blue economy toward sustainable energy.

11.
Chemistry ; 30(6): e202302984, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-37943498

ABSTRACT

Reactions of 5-SIDipp ⋅ BH3 (5-SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene) (1) with diphenyldiselenide provide access to 5-SIDipp-boryl mono- (5-SIDipp ⋅ BH2 SePh) (2) and bis-selenide (5-SIDipp ⋅ BH(SePh)2 ) (3). The facile cleavage of the B-Se bond makes 2 a neutral source of selenium nucleophiles in substitutions reactions with benzyl bromides, and provide access to the corresponding selenoethers. The direct transformations of one of the C(sp2 )-F bonds of C5 F5 N and C6 F5 CF3 to C-Se bonds have also been achieved by the use of 2 without employing transition-metal catalysts. While it was previously established that C6 F6 could undergo complete defluoroselenation under harsh conditions, we successfully achieved partial defluorination of C6 F6 by employing 2 as a mild selenide transfer reagent. During the formation of C-Se bonds through the cleavage of C-F bonds, the potential by-product NHC ⋅ BH2 F undergoes ring expansion of the NHC, leading to the formation of the six-membered diaazafluoroborinane (7).

12.
ACS Omega ; 8(27): 24644-24653, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37457492

ABSTRACT

Twelve multicomponent solvate crystals (cocrystal solvates) of 3,5-dinitrobenzoic acid and acetamide were synthesized via slow evaporation method. All crystalline materials were characterized by single-crystal X-ray diffraction. All cocrystal solvates are isostructural, and crystal packing forms continuous channels where some solvent molecules are connected via weak intermolecular interactions with 3,5-dinitrobenzoic acid and acetamide. All multicomponent solvate crystals encompass amide-amide dimer homo synthons and form R22 (8) motifs. Moreover, the phase purity of solvate crystals was analyzed by powder X-ray diffraction. Further, most of the cocrystal solvates were analyzed by nuclear magnetic resonance and differential scanning calorimetry. Cambridge structural database analysis categorizes solvate propensity in single-crystal structures. The importance of hydrogen bond donor/acceptor nature, size, and shape of solvents is also discussed in the context of crystallization and crystal packing.

13.
Chem Sci ; 14(22): 5894-5898, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37293651

ABSTRACT

Despite recent advancements in the chemistry of multiply bound boron compounds, the laboratory isolation of the parent oxoborane moiety, HBO has long remained an unsolved and well-recognized challenge. The reaction of 6-SIDipp·BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl)tetrahydropyrimidine-2-ylidene] with GaCl3 afforded an unusual boron-gallium 3c-2e compound (1). The addition of water to 1 resulted in the release of H2 and the formation of a rare acid stabilized neutral parent oxoborane, LB(H)[double bond, length as m-dash]O (2). Crystallographic and density functional theory (DFT) analyses support the presence of a terminal B[double bond, length as m-dash]O double bond. Subsequent addition of another equivalent of water molecule led to hydrolysis of the B-H bond to the B-OH bond, but the 'B[double bond, length as m-dash]O' moiety remained intact, resulting in the formation of the hydroxy oxoborane compound (3), which can be classified as a monomeric form of metaboric acid.

14.
Dalton Trans ; 51(38): 14452-14457, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36053266

ABSTRACT

The NHC·borane chemistry has been majorly restricted to imidazol-2-ylidene classes of carbenes. In our previous communication, we reported the synthesis of 6-SIDipp·BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2-ylidene] and its electrophilic substitution reaction with iodine. Here, we have shown selective bromination of a 6-SIDipp stabilized sp3 B-H bond. Treatment of 1.2 equivalents of N-bromosuccinamide with 6-SIDipp·BH3 gives a mixture of mono- and disubstituted products 6-SIDipp·BH2Br (1) and 6-SIDipp·BHBr2 (2). However, the reactions with alkyl bromides or carbon tetrabromide resulted in 6-SIDipp·BH2Br (1) selectively. Exploration of the chemistry of 6-SIDipp with BHCl2 and 9-BBN (9-borabicyclo[3.3.1]nonane) led to mono-6-SIDipp adducts 3 and 6a. Furthermore, 6a undergoes ring expansion to afford a seven-membered product, 6b, under mild conditions. Unlike BHCl2 or 9-BBN, the B-H bond of HBpin undergoes oxidative addition upon reaction with 6-SIDipp, epitomizing the first example (7) of a B-H bond insertion at NHCs. The analogous reactivity with HBcat led to a tetrahydropyrimidinium salt with B(cat)2 as a counteranion (8).

15.
Inorg Chem ; 61(34): 13330-13341, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35969438

ABSTRACT

We have prepared two new silylene-phosphine-based hybrid ligands Si{N(R)C6H4(PPh2)}{PhC(NtBu)2} [R = TMS {trimethylsilyl} (1) and TBDMS {tert-butyldimethylsilyl} (2)], which possess two donor sites. Furthermore, the treatment of the bidentate ligand 1 with base metal halides {FeBr2, CoBr2, NiCl2·dme [nickel chloride(II) ethylene glycol dimethyl ether]} and 2 with NiBr2·dme [nickel bromide(II) ethylene glycol dimethyl ether] afforded four-coordinate six-membered metal complexes 3-6, respectively, which feature coordination from both Si(II) and P(III) sites. Subsequently, complexes 3 [(FeBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 4 [(CoBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 5 [(NiCl2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], and 6 [(NiBr2)Si{N(SitBuMe2)C6H4(PPh2)}{PhC(NtBu)2}] are studied for their redox and magnetic properties with the help of UV-vis spectroscopy, cyclic voltammetry, SQUID magnetometry, and theoretical calculations. Complexes 3-6 were found to display a paramagnetic behavior. All the compounds are well established by single-crystal X-ray diffraction studies.

16.
Chem Commun (Camb) ; 58(74): 10380-10383, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36039684

ABSTRACT

The synthesis of novel stibenium cations and their catalytic application in cyanosilylation of carbonyl compounds have been described. Treatment of chlorostibine L1SbCl [L1 = 1,2-C6H4{N(CH2tBu)}2] (2) with 1 equiv. of AgOTf and AgSbF6 resulted in the formation of donor free L1SbOTf (3) and [L1Sb]+[SbF6]- (4), respectively. Among these three compounds, 4 exhibits excellent catalytic activity towards the cyanosilylation of aldehydes and ketones.

17.
Inorg Chem ; 61(33): 12991-12997, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35930736

ABSTRACT

The reaction of six-membered saturated NHC [1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2-ylidene; henceforth abbreviated as 6-SIDipp] with PhBCl2 yields a Lewis base adduct, 6-SIDipp·PhBCl2 (1), which readily undergoes nucleophilic substitution reaction with AgNO3, leading to the single (2) and double (3) substitution of both chlorides with ONO2 moieties at the boron atom. The reaction of 1 with 1 equiv of AlCl3 resulted in a borenium cation of composition [6-SIDipp·B(Ph)Cl]+ (4) with AlCl4- as the counteranion. Although borenium cations with different substituents on boron have been reported, a structurally characterized phenylchloroborenium cation remains unknown. Similarly, the reaction of 1 with triflic acid provides the first representative of a new class of borenium cations bearing one hydroxyl and one phenyl group on boron (5), a cationic analogue of borinic acid.

18.
Chem Commun (Camb) ; 58(23): 3783-3786, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35229841

ABSTRACT

Herein, we have undertaken the synthesis and investigated the reactivity of a 6-membered saturated NHC borane adduct (1). Direct electrophilic halogenation of 1 with a stoichiometric amount of I2 led to NHC boryl iodides, 6-SIDipp·BH2I (2) and 6-SIDipp·BHI2 (3), which were further reacted with various nucleophiles to give novel 6-SIDipp based mono and disubstituted boranes with OTf (4 and 6) or ONO2 (5 and 7) functional groups. The addition of Br2/H2O to 1 smoothly results in a dihydroxyborenium cation (8).

19.
Dalton Trans ; 50(45): 16678-16684, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34757370

ABSTRACT

In our previous communication, we have reported the synthesis of a new chlorogermylene (B) featuring a pyridylpyrrolido ligand. This study details the preparation of a series of new germylenes and stannylenes starting from B. A transmetallation reaction between B and SnCl2 led to the analogous chlorostannylene (1) with the simultaneous elimination of GeCl2. This is a very unusual example of transmetallation between two elements of the same group. The preparation of 1via lithiation led to the formation of 2 as a side product, where the ortho C-H bond of the pyridine ring was activated and functionalized with a nBu moiety. Subsequently, B and 1 were used as precursors to generate germylene (4) and stannylene (5) featuring tris(trimethylsilyl)silyl (hypersilyl) moieties. We also prepared tetrafluoropyridyl germylene (6) by reacting 4 with C5F5N with the simultaneous elimination of (Me3Si)3SiF by utilizing the fluoride affinity of the silicon atom. As there is scarcity of Sn(II) compounds as single-site catalysts, we investigated 5 as a catalyst towards the hydroboration of aldehydes, ketones, alkenes and alkynes. All the compounds have been characterized by single-crystal X-ray diffraction and by state of the art spectroscopic studies.

20.
J Org Chem ; 86(21): 15689-15694, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34623156

ABSTRACT

This note reports the synthesis and peptide formation of a novel triple G-C-T nucleobase amino acid (NBA) building block featuring three recognition faces: DDA (G mimic), DAA (C mimic), and ADA (T mimic). Readily obtainable in multigram scale in a remarkably easy one-step reaction, this unique NBA building block offers scope for wide ranging applications for nucleic acid recognition and nucleic acid peptide/protein interaction studies.


Subject(s)
Nucleic Acids , Peptide Nucleic Acids , Amino Acids , Nucleic Acid Conformation , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...