Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491565

ABSTRACT

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625041

ABSTRACT

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

3.
SSM Ment Health ; 2: 100175, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37916032

ABSTRACT

Background: When experiencing mental distress, many university students seek support from their peers. In schools and mental health services, formalised peer support interventions have demonstrated some success but implementation challenges have been reported. This study aimed to assess the feasibility, acceptability and safety of a novel manualized peer support intervention and associated data collection processes. Methods: A longitudinal mixed methods study was conducted following the pilot of a peer support intervention at a large London university between June 2021 and May 2022. The study utilised data routinely recorded on all students who booked a peer support session, focus groups with nine peer workers and five staff members implementing the intervention, pre-post intervention surveys with 13 students and qualitative interviews with 10 of those students. Results: 169 bookings were made during the pilot, of which 130 (77%) were attended, with November the peak month. Staff and peer workers described strong motivation and commitment to implement the intervention, noting that the peer support model and peer worker role addressed previously unmet needs at the university. However, students described implementation problems relating to the coherence of the intervention and the burden of participation. While students mostly described acceptable experiences, there were examples where acceptability was lower. No adverse events were reported during the pilot. Conclusion: The training and supervision of peer workers, and the provision of one-to-one peer support to students was found to be feasible, mostly acceptable, and safe. However, sustained implementation difficulties were observed. These pose challenges to the scalability of peer support in universities. We make recommendations to improve implementation of peer support including improving reach, greater clarity about the intervention, and fuller involvement of students throughout.

4.
Aquat Toxicol ; 237: 105875, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098373

ABSTRACT

The aquatic environment receives a wide variety of contaminants that interact with each other, influencing their mutual toxicity. Therefore, studies of mixtures are needed to fully understand their deleterious effects on aquatic organisms. In the present experiment, we aimed to assess the effects of Cd and Zn mixtures in common carp during a one-week exposure. The used nominal waterborne metal levels were 0.02, 0.05 and 0.10 µM for Cd and 3, 7.5 and 15 µM for Zn. Our results showed on the one hand a fast Cd increase and on the other hand a delayed Zn accumulation. In the mixture scenario an inhibition of Cd accumulation due to Zn was marked in the liver but temporary in the gills. For Zn, the delayed accumulation gives an indication of the efficient homeostasis of this essential metal. Between the different mixtures, a stimulation of Zn accumulation by Cd rather than an inhibition was seen in the highest metal mixtures. However, when compared to an earlier single Zn exposure, a reduced Zn accumulation was observed. Metallothionein gene expression was quickly activated in the analysed tissues suggesting that the organism promptly responded to the stressful situation. Finally, the metal mixture did not alter tissue electrolyte levels.


Subject(s)
Carps , Water Pollutants, Chemical , Animals , Bioaccumulation , Cadmium/metabolism , Cadmium/toxicity , Carps/metabolism , Gills/metabolism , Homeostasis , Metallothionein/metabolism , Water Pollutants, Chemical/toxicity , Zinc/metabolism , Zinc/toxicity
5.
Phys Rev Lett ; 126(2): 025001, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33512226

ABSTRACT

Inertial confinement fusion seeks to create burning plasma conditions in a spherical capsule implosion, which requires efficiently absorbing the driver energy in the capsule, transferring that energy into kinetic energy of the imploding DT fuel and then into internal energy of the fuel at stagnation. We report new implosions conducted on the National Ignition Facility (NIF) with several improvements on recent work [Phys. Rev. Lett. 120, 245003 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.245003; Phys. Rev. E 102, 023210 (2020)PRESCM2470-004510.1103/PhysRevE.102.023210]: larger capsules, thicker fuel layers to mitigate fuel-ablator mix, and new symmetry control via cross-beam energy transfer; at modest velocities, these experiments achieve record values for the implosion energetics figures of merit as well as fusion yield for a NIF experiment.

6.
Aquat Toxicol ; 226: 105561, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32688145

ABSTRACT

In the aquatic environment, metals are present as mixtures, therefore studies on mixture toxicity are crucial to thoroughly understand their toxic effects on aquatic organisms. Common carp (Cyprinus carpio) were used to assess the effects of short-term Cu(II) and Cd(II) mixtures, using a fixed concentration of one of the metals, representing 25 % of its individual 96h-LC50 (concentration lethal for 50 % of the population) combined with a variable concentration of the other metal corresponding to 10, 25 or 50 % of its 96h-LC50, and vice versa. Our results showed a fast Cu and Cd bioaccumulation, with the percentage of increase in the order gill > liver > carcass. An inhibitory effect of Cu on Cd uptake was observed; higher Cu concentrations at fixed Cd levels resulted in a decreased accumulation of Cd. The presence of the two metal ions resulted in losses of total Na, K and Ca. Fish tried to compensate for the Na loss through the induction of the genes coding for Na+/K+-ATPase and H+-ATPase. Additionally, a counterintuitive induction of the gene encoding the high affinity copper transporter (CTR1) occurred, while a downregulation was expected to prevent further metal ion uptake. An induction of defensive mechanisms, both metal ion binding protein and anti-oxidant defences, was observed. Despite the metal accumulation and electrolyte loss, the low mortality suggest that common carp is able to cope with these metal levels, at least during a one-week exposure.


Subject(s)
Bioaccumulation/drug effects , Cadmium/toxicity , Carps/metabolism , Copper/toxicity , Homeostasis/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cadmium/metabolism , Carps/genetics , Copper/metabolism , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Electrolytes/metabolism , Gills/drug effects , Gills/metabolism , Ion Transport , Lethal Dose 50 , Potassium/metabolism , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Water Pollutants, Chemical/metabolism
7.
Aquat Toxicol ; 218: 105363, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31783302

ABSTRACT

The aquatic environment is continuously under threat because it is the final receptor and sink of waste streams. The development of industry, mining activities and agriculture gave rise to an increase in metal pollution in the aquatic system. Thus a wide occurrence of metal mixtures exists in the aquatic environment. The assessment of mixture stress remains a challenge considering that we can not predict the toxicity of a mixture on the basis of single compounds. Therefore the analysis of the effects of environmentally relevant waterborne mixtures is needed to improve our understanding of the impact of metal pollution in aquatic ecosystems. Our aim was to assess whether 10 % of the concentration of the 96 h LC50 (the concentration that is lethal to 50 % of the population in 96 h) of individual metal exposures can be considered as a "safe" concentration when applied in a trinomial mixture. Therefore, common carp were exposed to a sublethal mixture of Cu 0.07 ±â€¯0.001 µM (4.3 ±â€¯0.6 µg/L), Zn 2.71 ±â€¯0.81 µM (176.9 ±â€¯52.8 µg/L) and Cd 0.03 ±â€¯0.0004 µM (3.0 ±â€¯0.4 µg/L) at 20 °C for a period of one week. Parameters assessed included survival rate, bioaccumulation and physiological biomarkers related to ionoregulation and defensive mechanisms such as MT induction. Our results showed a sharp increase in Cu and Cd concentration in gills within the first day of exposure while Zn levels remained stable. The accumulation of these metals led to a Na drop in gills, liver and muscle as well as a decreased K content in the liver. Biomarkers related to Na uptake were also affected: on the first day gene expression for H+-ATPase was transiently increased while a concomitant decreased gene expression of the Na+/H+ exchanger occurred. A fivefold induction of metallothionein gene expression was reported during the entire duration of the experiment. Despite the adverse effects on ionoregulation all fish survived, indicating that common carp are able to cope with these low metal concentrations, at least during a one week exposure.


Subject(s)
Bioaccumulation , Cadmium/toxicity , Carps/metabolism , Copper/toxicity , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Bioaccumulation/genetics , Biomarkers/metabolism , Cadmium/metabolism , Carps/genetics , Copper/metabolism , Ecosystem , Electrolytes/metabolism , Gene Expression/drug effects , Homeostasis/drug effects , Lethal Dose 50 , Metallothionein/genetics , Proton-Translocating ATPases/genetics , Water Pollutants, Chemical/metabolism , Zinc/metabolism
8.
Eur Child Adolesc Psychiatry ; 28(5): 655-666, 2019 May.
Article in English | MEDLINE | ID: mdl-30229306

ABSTRACT

Shared decision making (SDM) is increasingly being suggested as an integral part of mental health provision. Yet, there is little research on what clinicians believe the barriers and facilitators around practice to be. At the same time, there is also increasing recognition of a theory-practice gap within the field, with calls for more pragmatic uses of theory to inform and improve clinical practice. Using the Theoretical Domains Framework (TDF), a comprehensive, theoretical-led framework, underpinned by 33 behaviour change theories and 128 constructs, clinician perceived barriers and facilitators to SDM are investigated. The sample comprised of 15 clinicians across two sites in England, who took part in qualitative semi-structured interviews and focus groups. Transcripts were analysed using a deductive thematic analysis, and themes were coded under each theoretical domain. Overall, 21 barriers and facilitators for SDM in child and youth mental health were identified across ten domains of the TDF. Under capability, barriers and facilitators were found for knowledge, skills, memory/attention/decision making processes, and behavioural regulation. For opportunity, barriers and facilitators were found for social influences, as well as environmental context and resources. Finally, for motivation, domains covered included: beliefs about consequences, beliefs about capabilities, emotions, and professional role and identity. Findings suggest that a range of barriers and facilitators affect clinicians' abilities to engage in SDM with young people and parents. Interventions which target different domains related to capability, opportunity and motivation should be developed to better facilitate young people and their families in care and treatment decisions.


Subject(s)
Decision Making/ethics , Mental Health/ethics , Patient Preference/psychology , Adult , Female , Humans , Male , Middle Aged
9.
Rev Sci Instrum ; 89(10): 10K111, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399855

ABSTRACT

Achieving a symmetric implosion in National Ignition Facility indirect drive targets requires understanding and control of dynamic changes to the laser power transport in the hohlraum. We developed a new experimental platform to simultaneously visualize wall-plasma motion and dynamic laser power transport in the hohlraum and are using it to investigate correlations of these measurements with the imploded capsule symmetry. In a series of experiments where we made one single parameter variation, we show the value of this new platform in developing an understanding of laser transport and implosion symmetry. This platform also provides a new way to evaluate dynamic performance of advanced hohlraum designs.

10.
Rev Sci Instrum ; 87(11): 11E321, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910418

ABSTRACT

The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

11.
Rev Sci Instrum ; 87(11): 11E334, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910429

ABSTRACT

At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

12.
Nat Commun ; 6: 6190, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25648079

ABSTRACT

Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely directed field lines collide. In most natural circumstances, the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. In addition, the regime of strongly driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed the experiments to probe reconnection in asymmetric, strongly driven, laser-generated plasmas. Here we show that, in this strongly driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. In addition, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

13.
Rev Sci Instrum ; 85(11): 11E503, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430345

ABSTRACT

Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features.

14.
Rev Sci Instrum ; 85(11): 11E605, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430351

ABSTRACT

In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

15.
Phys Rev Lett ; 112(19): 195001, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877944

ABSTRACT

First measurements of the in-flight shape of imploding inertial confinement fusion (ICF) capsules at the National Ignition Facility (NIF) were obtained by using two-dimensional x-ray radiography. The sequence of area-backlit, time-gated pinhole images is analyzed for implosion velocity, low-mode shape and density asymmetries, and the absolute offset and center-of-mass velocity of the capsule shell. The in-flight shell is often observed to be asymmetric even when the concomitant core self-emission is round. A ∼ 15 µm shell asymmetry amplitude of the Y(40) spherical harmonic mode was observed for standard NIF ICF hohlraums at a shell radius of ∼ 200 µm (capsule at ∼ 5× radial compression). This asymmetry is mitigated by a ∼ 10% increase in the hohlraum length.


Subject(s)
Models, Theoretical , Radiography/methods , Computer Simulation , Germanium/chemistry , Gold/chemistry , Thermodynamics , X-Rays
16.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484021

ABSTRACT

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

17.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010449

ABSTRACT

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

18.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931375

ABSTRACT

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

19.
Phys Rev Lett ; 111(23): 235001, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476279

ABSTRACT

On the National Ignition Facility, the hohlraum-driven implosion symmetry is tuned using cross-beam energy transfer (CBET) during peak power, which is controlled by applying a wavelength separation between cones of laser beams. In this Letter, we present early-time measurements of the instantaneous soft x-ray drive at the capsule using reemission spheres, which show that this wavelength separation also leads to significant CBET during the first shock, even though the laser intensities are 30× smaller than during the peak. We demonstrate that the resulting early drive P2/P0 asymmetry can be minimized and tuned to <1% accuracy (well within the ±7.5% requirement for ignition) by varying the relative input powers between different cones of beams. These experiments also provide time-resolved measurements of CBET during the first 2 ns of the laser drive, which are in good agreement with radiation-hydrodynamics calculations including a linear CBET model.

20.
Phys Rev Lett ; 110(7): 075001, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166377

ABSTRACT

The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...