Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Virol Methods ; 318: 114755, 2023 Aug.
Article En | MEDLINE | ID: mdl-37244432

Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.


Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Vero Cells , Porcine epidemic diarrhea virus/genetics , Virulence , Serial Passage , Vaccines, Attenuated/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary
2.
Vet Res Commun ; 47(1): 191-205, 2023 Jan.
Article En | MEDLINE | ID: mdl-35633471

Highly pathogenic avian influenza viruses (HPAIV) have been responsible for causing several severe outbreaks across the world. To protect poultry farms and to prevent the possible spread of new influenza pandemics, vaccines that are both efficacious and low-cost are in high demand. We produced stable, large hemagglutinin H5 oligomers in planta by the specific interaction between S•Tag and S•Protein. H5 oligomers combined via S•Tag::S•Protein interaction in plant crude extracts induced strong humoral immune responses, strong neutralizing antibody responses, and resistance in chickens after challenge with a wild type HPAIV H5 virus strain. In all three parameters, plant crude extracts with H5 oligomers induced better responses than crude extracts containing trimers. The neutralizing antibodies induced by by two-dose and one dose immunization with an adjuvanted crude extract containing H5 oligomer protected vaccinated chickens from two lethal H5N1 virus strains with the efficiency of 92% and 100%, respectively. Following housing vaccinated chickens together with ten non-immunized chickens, only one of these chickens had detectable levels of the H5N1 virus. To facilitate the easy storage of a candidate vaccine, the H5 oligomer crude extracts were mixed with adjuvants and stored for 3.5 and 5.5 months at 4 °C, and chickens were immunized with these crude extracts. All these vaccinated chickens survived after a lethal H5N1 virus challenge. H5 oligomer crude extracts are comparable to commercial vaccines as they also induce strong virus-neutralizing immune responses following the administration of a single dose. The cost-effective production of plant crude extract vaccine candidates and the high stability after long-term storage will enable and encourage the further exploration of this technology for veterinary vaccine development.


Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Hemagglutinins , Chickens , Antibodies, Viral , Antibodies, Neutralizing , Vaccination/veterinary
3.
Front Vet Sci ; 9: 940395, 2022.
Article En | MEDLINE | ID: mdl-35967993

Porcine epidemic diarrhea virus (PEDV) is a serious infectious causative agent in swine, especially in neonatal piglets. PEDV genotype 2 (G2) strains, particularly G2a, were the primary causes of porcine epidemic diarrhea (PED) outbreaks in Vietnam. Here, we produced a plant-based CO-26K-equivalent epitope (COE) variant from a Vietnamese highly virulent PEDV strain belonging to genotype 2a (COE/G2a) and evaluated the protective efficacy of COE/G2a-GCN4pII protein (COE/G2a-pII) in piglets against the highly virulent PEDV G2a strain following passive immunity. The 5-day-old piglets had high levels of PEDV-specific IgG antibodies, COE-IgA specific antibodies, neutralizing antibodies, and IFN-γ responses. After virulent challenge experiments, all of these piglets survived and had normal clinical symptoms, no watery diarrhea in feces, and an increase in their body weight, while all of the negative control piglets died. These results suggest that the COE/G2a-pII protein produced in plants can be developed as a promising vaccine candidate to protect piglets against PEDV G2a infection in Vietnam.

4.
Vaccines (Basel) ; 8(2)2020 Apr 02.
Article En | MEDLINE | ID: mdl-32252383

Abstract: Vietnam is one of the countries most affected worldwide by the highly pathogenic avian influenza (HPAI) virus, which caused enormous economic loss and posed threats to public health. Over nearly two decades, with the antigenic changes in the diversified H5Ny viruses, the limited protective efficacy of the available vaccines was encountered. Therefore, it is necessary to approach a technology platform for the country to accelerate vaccine production that enables quick response to new influenza subtypes. This study utilized a powerful reverse genetics technique to successfully generate a recombinant H5N1 vaccine strain (designated as IBT-RG02) containing two surface proteins (haemagglutinin (HA) and neuraminidase (NA)) from the HPAI H5N1 (A/duck/Vietnam/HT2/2014(H5N1)) of the dominant clade 2.3.2.1c in Vietnam during 2012-2014. Importantly, the IBT-RG02 vaccine candidate has elicited high antibody titres in chickens (geometric mean titre (GMT) of 6.42 and 6.92, log2 on day 14 and day 28 p.i., respectively). To test the efficacy, immunized chickens were challenged with the circulating virulent strains. As results, there was a high protection rate of 91.6% chickens against the virulent A/DK/VN/Bacninh/NCVD-17A384/2017 of the same clade and a cross-protection of 83.3% against A/duck/TG/NAVET(3)/2013 virus of clade 1.1. Our promising results showed that we can independently master the reverse genetics technology for generation of highly immunogenic vaccine candidates, and henceforth, it is a timely manner to reformulate avian influenza virus vaccines against variable H5 clade HPAI viruses in Vietnam.

...