Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731881

Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.


Aging , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , HEK293 Cells , Aging/metabolism , Protein Aggregates/drug effects , Proteolysis/drug effects , alpha-Synuclein/metabolism , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , tau Proteins/metabolism , Protein Aggregation, Pathological/metabolism , Peptidomimetics/pharmacology , Peptidomimetics/chemistry
2.
Biomolecules ; 12(6)2022 06 02.
Article En | MEDLINE | ID: mdl-35740902

Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders. In this study we designed and obtained a series of peptidomimetic stimulators of 20S comprising in their sequences the C-terminal fragment of Blm10 activator. Some of the compounds were capable of enhancing the degradation of natively unfolded and oxidatively damaged proteins, such as α-synuclein and enolase, whose applicability as proteasome substrates was evaluated by microscale thermophoresis (MST). Furthermore, they increased the ChT-L activity of the proteasome in HEK293T cell extracts. Our studies indicate that the 20S proteasome-mediated protein substrates hydrolysis may be selectively increased by peptide-based stimulators acting in an allosteric manner. These compounds, after further optimization, may have the potential to counteract proteasome impairment in patients suffering from age-related diseases.


Neurodegenerative Diseases , Peptidomimetics , HEK293 Cells , Humans , Peptidomimetics/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteolysis
...