Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919841

ABSTRACT

Sodium restriction is often recommended in heart failure (HF) to block symptomatic edema, despite limited evidence for benefit. However, a low-sodium diet (LSD) activates the classical renin-angiotensin-aldosterone system (RAAS), which may adversely affect HF progression and mortality in patients with dilated cardiomyopathy (DCM). We performed a randomized, blinded pre-clinical trial to compare the effects of a normal (human-equivalent) sodium diet and a LSD on HF progression in a normotensive model of DCM in mice that has translational relevance to human HF. The LSD reduced HF progression by suppressing the development of pleural effusions (p < 0.01), blocking pathological increases in systemic extracellular water (p < 0.001) and prolonging median survival (15%, p < 0.01). The LSD activated the classical RAAS by increasing plasma renin activity, angiotensin II and aldosterone levels. However, the LSD also significantly up-elevated the counter-regulatory RAAS by boosting plasma angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) levels, promoting nitric oxide bioavailability and stimulating 3'-5'-cyclic guanosine monophosphate (cGMP) production. Plasma HF biomarkers associated with poor outcomes, such as B-type natriuretic peptide and neprilysin were decreased by a LSD. Cardiac systolic function, blood pressure and renal function were not affected. Although a LSD activates the classical RAAS system, we conclude that the LSD delayed HF progression and mortality in experimental DCM, in part through protective stimulation of the counter-regulatory RAAS to increase plasma ACE2 and angiotensin (1-7) levels, nitric oxide bioavailability and cGMP production.


Subject(s)
Angiotensin I/biosynthesis , Cyclic GMP/metabolism , Diet, Sodium-Restricted , Edema/prevention & control , Heart Failure/complications , Nitric Oxide/metabolism , Peptide Fragments/biosynthesis , Animals , Biological Availability , Biomarkers/blood , Blood Pressure , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/physiopathology , Edema/blood , Heart Failure/blood , Heart Failure/physiopathology , Kidney/physiopathology , Male , Mice, Inbred C57BL , Natriuretic Peptide, Brain/metabolism , Nitric Oxide/blood , Nitric Oxide Synthase/metabolism , Phosphoric Diester Hydrolases/metabolism , Pleural Effusion , Renin-Angiotensin System , Survival Analysis , Systole
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751757

ABSTRACT

Nearly one in three people in the U.S. will develop heart failure (HF), characterized by fluid retention (edema) in the lungs and elsewhere. This leads to difficult breathing, deterioration of physical capacity, restriction of normal activities and death. There is little data about the safety and effects of sexual interactions in patients with HF. We tested whether a lack of sexual interactions affected pathophysiological outcomes in a pre-clinical mouse model of dilated cardiomyopathy that recapitulates the progressive stages of human HF. Male mice were randomly given access to, or deprived from, sexual interactions with female mice, which were confirmed by videography and generation of offspring. Cohousing with access to sexual interactions markedly prolonged survival, while cohousing without access to sexual activity did not. Sexual interactions improved systolic function, reduced HF-associated edema, altered transcription of heart contractile protein genes and decreased plasma testosterone levels. To determine whether testosterone levels contributed to survival, testosterone levels were experimentally reduced. Reduction of testosterone levels significantly prolonged survival. Taken together, in mice with dilated cardiomyopathy, sexual activity altered cardiac contractile gene transcription, improved systolic function, reduced edema and prolonged survival which may be in part due to lower testosterone levels.


Subject(s)
Cardiomyopathy, Dilated/prevention & control , Coitus/physiology , Heart Failure/prevention & control , Sexual Behavior/physiology , Animals , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Female , Heart Failure/physiopathology , Humans , Male , Mice , Myocardial Contraction , Survival/physiology
3.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422879

ABSTRACT

Altered expression of corin, a cardiac transmembrane serine protease, has been linked to dilated and ischemic cardiomyopathy. However, the potential role of corin in myocardial infarction (MI) is lacking. This study examined the outcomes of MI in wild-type vs. cardiac-specific overexpressed corin transgenic (Corin-Tg) mice during pre-MI, early phase (3, 24, 72 h), and late phase (1, 4 weeks) post-MI. Corin overexpression significantly reduced cardiac cell apoptosis (p < 0.001), infarct size (p < 0.001), and inhibited cleavage of procaspases 3, 9, and 8 (p < 0.05 to p < 0.01), as well as altered the expression of Bcl2 family proteins, Bcl-xl, Bcl2 and Bak (p < 0.05 to p < 0.001) at 24 h post-MI. Overexpressed cardiac corin also significantly modulated heart function (ejection fraction, p < 0.0001), lung congestion (lung weight to body weight ratio, p < 0.0001), and systemic extracellular water (edema, p < 0.05) during late phase post-MI. Overall, cardiac corin overexpression significantly reduced apoptosis, infarct size, and modulated cardiac expression of key members of the apoptotic pathway in early phase post-MI; and led to significant improvement in heart function and reduced congestion in late phase post-MI. These findings suggest that corin may be a useful target to protect the heart from ischemic injury and subsequent post-infarction remodeling.


Subject(s)
Apoptosis/genetics , Myocardial Infarction/genetics , Myocardium/metabolism , Serine Endopeptidases/genetics , Animals , Cell Death/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Ventricular Remodeling/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-X Protein/genetics
4.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31404946

ABSTRACT

Heart failure (HF) patients frequently have elevated plasma renin activity. We examined the significance of elevated plasma renin activity in a translationally-relevant model of dilated cardiomyopathy (DCM), which replicates the progressive stages (A-D) of human HF. Female mice with DCM and elevated plasma renin activity concentrations were treated with a direct renin inhibitor (aliskiren) in a randomized, blinded fashion beginning at Stage B HF. By comparison to controls, aliskiren treatment normalized pathologically elevated plasma renin activity (p < 0.001) and neprilysin levels (p < 0.001), but did not significantly alter pathological changes in plasma aldosterone, angiotensin II, atrial natriuretic peptide, or corin levels. Aliskiren improved cardiac systolic function (ejection fraction, p < 0.05; cardiac output, p < 0.01) and significantly reduced the longitudinal development of edema (extracellular water, p < 0.0001), retarding the transition from Stage B to Stage C HF. The normalization of elevated plasma renin activity reduced the loss of body fat and lean mass (cachexia/sarcopenia), p < 0.001) and prolonged survival (p < 0.05). In summary, the normalization of plasma renin activity retards the progression of experimental HF by improving cardiac systolic function, reducing the development of systemic edema, cachexia/sarcopenia, and mortality. These data suggest that targeting pathologically elevated plasma renin activity may be beneficial in appropriately selected HF patients.


Subject(s)
Amides/therapeutic use , Cardiomyopathy, Dilated/drug therapy , Fumarates/therapeutic use , Renin/antagonists & inhibitors , Renin/blood , Animals , Cachexia/blood , Cachexia/complications , Cachexia/drug therapy , Cardiomyopathy, Dilated/blood , Cardiomyopathy, Dilated/complications , Disease Models, Animal , Edema/blood , Edema/complications , Edema/drug therapy , Female , Heart Failure/blood , Heart Failure/complications , Heart Failure/drug therapy , Humans , Mice , Mice, Inbred C57BL
5.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261774

ABSTRACT

Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin-angiotensin-aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.


Subject(s)
Heart Failure/blood , Renin/blood , Animals , Biomarkers/blood , Cardiac Output , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Renin/antagonists & inhibitors , Systole
6.
Int J Mol Sci ; 21(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892216

ABSTRACT

Humans with dilated cardiomyopathy (DCM) and heart failure (HF) develop low levels of corin, a multi-domain, cardiac-selective serine protease involved in natriuretic peptide cleavage and sodium and water regulation. However, experimental restoration of corin levels markedly attenuates HF progression. To determine whether the beneficial effects of corin in HF require catalytic activity, we engineered cardiac overexpression of an enzymatically inactive corin transgene (corin-Tg(i)). On a wild-type (WT) background, corin-Tg(i) had no evident phenotypic effects. However, in a well-established genetic model of DCM, corin-Tg(i)/DCM mice had increased survival (p < 0.01 to 0.001) vs. littermate corin-WT/DCM controls. Pleural effusion (p < 0.01), lung edema (p < 0.05), systemic extracellular free water (p < 0.01), and heart weight were decreased (p < 0.01) in corin-Tg(i)/DCM vs. corin-WT/DCM mice. Cardiac ejection fraction and fractional shortening improved (p < 0.01), while ventricular dilation decreased (p < 0.0001) in corin-Tg(i)/DCM mice. Plasma atrial natriuretic peptide, cyclic guanosine monophosphate, and neprilysin were significantly decreased. Cardiac phosphorylated glycogen synthase kinase-3ß (pSer9-GSK3ß) levels were increased in corin(i)-Tg/DCM mice (p < 0.01). In summary, catalytically inactive corin-Tg(i) decreased fluid retention, improved contractile function, decreased HF biomarkers, and diminished cardiac GSK3ß activity. Thus, the protective effects of cardiac corin on HF progression and survival in experimental DCM do not require the serine protease activity of the molecule.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Edema/metabolism , Myocardial Contraction/physiology , Serine Endopeptidases/metabolism , Animals , Biomarkers/metabolism , Female , Glycogen Synthase Kinase 3 beta/metabolism , Heart/physiopathology , Heart Failure/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism
7.
PLoS One ; 13(9): e0202571, 2018.
Article in English | MEDLINE | ID: mdl-30192780

ABSTRACT

Following acute myocardial infarction, clinical studies show alterations in the blood levels of corin, a cardiac-selective activator of the natriuretic peptides pro-atrial natriuretic peptide (pro-ANP) and pro-B-type natriuretic peptide (pro-BNP). However, the temporal changes in circulating and cardiac corin levels and their relationships to the severity of myocardial infarction have not been studied. The main objective of this study was to examine the relationship between cardiac and circulating corin levels and their association with cardiac systolic function and infarct size during the early phase of acute myocardial infarction (<72 h) in a translationally relevant induced coronary ligation mouse model. This acute phase timeline was chosen to correlate with the clinical practice within which blood samples are collected from myocardial infarction patients. Heart and plasma samples were examined at 3, 24, and 72 hours post acute myocardial infarction. Plasma corin levels were examined by enzyme-linked immunosorbent assay, transcripts of cardiac corin, pro-ANP and pro-BNP by quantitative real-time polymerase chain reaction, cardiac corin expression by immunohistology, infarct size by histology and heart function by echocardiography. Plasma corin levels were significantly increased at 3 (P<0.05), 24 (P<0.001), and 72 hours (P<0.01) post-acute myocardial infarction. In contrast, cardiac corin transcript levels dropped by 5% (P>0.05), 69% (P<0.001) and 65% (P<0.001) and immunoreactive cardiac corin protein levels dropped by 30% (P<0.05), 76% (P<0.001) and 75% (P<0.001), while cardiac pro-ANP and pro-BNP transcript levels showed an opposite pattern. Plasma corin levels were negatively correlated with immunoreactive cardiac corin (P<0.01), ejection fraction (P<0.05) and fractional shortening (P<0.05), but positively correlated with infarct size (P<0.01). In conclusion, acute myocardial infarction induces rapid increases in plasma corin and decreases in cardiac corin levels. In the early phase of acute myocardial infarction, plasma corin levels are inversely correlated with heart function and may reflect the severity of myocardial damage.


Subject(s)
Myocardial Infarction/complications , Myocardial Ischemia/blood , Myocardial Ischemia/complications , Serine Endopeptidases/blood , Animals , Atrial Natriuretic Factor/genetics , Heart/physiopathology , Male , Mice , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Natriuretic Peptide, Brain/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
8.
PLoS One ; 12(12): e0189315, 2017.
Article in English | MEDLINE | ID: mdl-29240788

ABSTRACT

Dilated cardiomyopathy (DCM) is the major cause of heart failure affecting both women and men. Limited clinical studies show conflicting data in sex-related differences in the progression of dilated cardiomyopathy and heart failure (HF) outcomes. We examined the comparative sex-related progression of cardiomyopathy and the development of HF (at 4, 7, 13 weeks of age) in a well-established, transgenic mouse model of DCM that recapitulates the progressive stages of human HF. By 13 weeks of age, female mice with DCM had more severe left ventricular systolic dysfunction, left ventricular dilation and wall thinning (P<0.001 for all) than age-matched male mice with DCM. Female mice also had greater lung edema (P<0.001), cardiac fibrosis (P<0.01) and pleural effusions, which were not rescued by ovariectomy. By comparison to DCM male mice at 13 weeks, these pathological changes in female mice with DCM, were associated with significant increases in plasma active renin (P<0.01), angiotensin II (P<0.01) and aldosterone levels (P<0.001). In comparison to DCM male mice, DCM female mice also showed differential expression of the natriuretic peptide system with lower corin and higher ANP, BNP and cGMP levels at 13 weeks of age. We conclude, that female mice with experimental DCM have an accelerated progression of cardiomyopathy and HF, which was not corrected by early ovariectomy. These alterations are associated with early renin activation with increased angiotensin II and aldosterone levels, and altered expression of the natriuretic peptide system.


Subject(s)
Cardiomyopathy, Dilated/physiopathology , Heart Failure/physiopathology , Renin/metabolism , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/mortality , Female , Heart Failure/metabolism , Heart Failure/mortality , Male , Mice , Mice, Transgenic , Sex Factors
9.
Hypertension ; 67(2): 362-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26667411

ABSTRACT

Dilated cardiomyopathy is a major cause of heart failure (HF) that affects millions. Corin cleaves and biologically activates pro-atrial natriuretic peptide (pro-ANP) and pro-B-type natriuretic peptide (pro-BNP). High corin levels reduce the development of systolic dysfunction and HF in experimental dilated cardiomyopathy. Yet, patients with significant HF unexpectedly show low corin levels with high plasma ANP/BNP levels. Therefore, we examined the relationship between cardiac corin expression, ANP/BNP levels, and the stages of HF. We used a well-established, dilated cardiomyopathy model to evaluate gene and protein expression as mice longitudinally developed Stages A-D HF. Cardiac systolic function (ejection fraction) continuously declined over time (P<0.001). Cardiac corin transcripts were decreased at early Stage B HF and remained low through Stages C and D (P<0.001). Cardiac corin levels were positively correlated with systolic function (r=0.96, P=0.003) and inversely with lung water (r=-0.92, P=0.001). In contrast, cardiac pro-ANP/BNP transcripts increased later (Stages C and D) and plasma levels rose only with terminal HF (Stage D, P<0.001). Immunoreactive plasma ANP and BNP levels were positively associated with plasma cyclic guanosine monophosphate levels (r=0.82, P=0.01 and r=0.8, P=0.02, respectively). In experimental dilated cardiomyopathy, corin levels declined early with progressive systolic dysfunction before the development of HF, whereas significant increases in plasma ANP, BNP, and cyclic guanosine monophosphate levels were found only in later stage (C and D) HF. This dyssynchrony in expression of corin versus ANP/BNP may impair cleavage activation of pro-natriuretic peptides, and thereby promote the transition from earlier to later stage HF.


Subject(s)
Atrial Natriuretic Factor/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Serine Endopeptidases/metabolism , Ventricular Dysfunction, Left/metabolism , Animals , Disease Models, Animal , Disease Progression , Heart Failure/etiology , Heart Failure/physiopathology , Male , Mice , Systole , Time Factors , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/physiopathology
10.
Gene ; 525(1): 116-23, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23680644

ABSTRACT

VopF, the type III effector molecule, has been implicated in the pathogenesis of non-O1, non-O139 strains of Vibrio cholerae. It is a protein of 530 amino acids, comprises of one formin homology 1-like (FH1-like) domain and three WASP homology 2 (WH2) domains. Previous works have demonstrated that WH2 domains are crucial for VopF function as a modulator of cellular actin homeostasis. Furthermore, domain deletion analysis also suggests that VopF variant constituted with only WH2 domain 3 is more efficient in restricting the growth of budding yeast than its congeners containing either only domain 1 or domain 2. Interestingly, a good degree of sequence diversity is present within each WH2 domain of VopF. In order to ascertain the importance of different amino acids in each WH2 domain, a systemic alanine scanning mutagenesis was employed. Using a yeast model system, the alanine derivatives of each amino acid of WH2 domain 1 and 3 of VopF were examined for growth restricting activity. Taken together, our mutagenesis results reveal the identification of critical residues of WH2 domain 1 and 3 of VopF.


Subject(s)
Alanine/genetics , Bacterial Proteins/genetics , Saccharomyces cerevisiae/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Actins/genetics , Amino Acid Sequence , Amino Acids/genetics , Fungal Proteins/genetics , Homeostasis/genetics , Molecular Sequence Data , Mutagenesis , Protein Structure, Tertiary , Sequence Alignment , Vibrio cholerae/genetics
11.
J Med Microbiol ; 59(Pt 1): 17-24, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19779031

ABSTRACT

VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 Vibrio cholerae strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.


Subject(s)
Bacterial Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vibrio cholerae non-O1/classification , Vibrio cholerae non-O1/metabolism , Virulence Factors/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Fungal/physiology , Saccharomyces cerevisiae/genetics , Vibrio cholerae non-O1/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...