Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Viruses ; 15(12)2023 12 03.
Article in English | MEDLINE | ID: mdl-38140619

ABSTRACT

Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.


Subject(s)
Neoplasms , Vaccines , Humans , COVID-19 Vaccines , Virus Replication/genetics , Neoplasms/genetics , Neoplasms/therapy , Genetic Vectors/genetics , Adenoviridae/genetics , Genetic Therapy
2.
Curr Opin Neurol ; 36(5): 464-473, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37639402

ABSTRACT

PURPOSE OF REVIEW: Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS: Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY: Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.


Subject(s)
Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Genetic Therapy , Central Nervous System , Dependovirus/genetics , Glycogen
3.
Nature ; 618(7967): 1049-1056, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316668

ABSTRACT

Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.


Subject(s)
Cell Nucleus , Chromosome Segregation , Chromosomes, Human , Chromothripsis , Mitosis , Humans , Cell Nucleus/genetics , Cell Nucleus/metabolism , Neoplasms/genetics , Chromatin/genetics
4.
Mol Ther Methods Clin Dev ; 24: 154-170, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35071688

ABSTRACT

Recent clinical successes have propelled recombinant adeno-associated virus vectors (rAAV) to the center stage for human gene therapy applications. However, the exploding demand for high titers of highly pure rAAV vectors for clinical applications and market needs remains hindered by challenges met at the manufacturing stage. The production of rAAV by transfection in suspension cells remains one of the most commonly used production platforms. In this study, we describe our optimized protocol to produce rAAV by polyethyleneimine (PEI)-mediated transfection in suspension HEK293 cells, along with a side-by-side comparison to our high-performing system using the herpes simplex virus (HSV). Further, we detail a new, robust, and highly efficient downstream purification protocol compatible with both transfection and infection-based harvests that generated rAAV9 stocks of high purity. Our in-depth comparison revealed quantitative, qualitative, and biological differences between PEI-mediated transfection and HSV infection. The HSV production system yielded to higher rAAV vector titers, higher specific yields, and a higher percentage of full capsids than transfection. Furthermore, HSV-produced stocks had a significantly lower concentration of residual host cell proteins and helper DNA impurities, but contained detectable levels of HSV DNA. Importantly, the potency of PEI-produced and HSV-produced rAAV stocks were identical. Analyses of AAV Rep and Cap expression levels and replication showed that HSV-mediated production led to a lower expression of Rep and Cap, but increased levels of AAV genome replication. Our methodology enables high-yield, high purity rAAV production and a biological framework to improve transfection quality and yields by mimicking HSV-induced biological outcomes.

6.
Mol Ther Methods Clin Dev ; 21: 1-13, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33768125

ABSTRACT

The increasing demand for adeno-associated virus (AAV) vectors, a result from the surging interest for their potential to cure human genetic diseases by gene transfer, tumbled on low-performing production systems. Innovative improvements to increase both yield and quality of the vector produced have become a priority undertaking in the field. In a previous study, we showed that adding a specific concentration of sodium chloride (NaCl) to the production medium resulted in a dramatic increase of AAV vector particle and infectious titers when using the herpes simplex virus (HSV) production system, both in adherent or suspension platforms. In this work, we studied additional salts and their impact on AAV vector production. We found that potassium chloride (KCl), or a combination of KCl and NaCl, resulted in the highest increase in AAV vector production. We determined that the salt-mediated effect was the most impactful when the salt was present between 8 and approximately 16 h post-infection, with the highest rate increase occurring within the first 24 h of the production cycle. We showed that the AAV vector yield increase did not result from an increase in cell growth, size, or viability. Furthermore, we demonstrated that the impact on AAV vector production was specifically mediated by NaCl and KCl independently of their impact on the osmolality of the production media. Our findings convincingly showed that NaCl and KCl were uniquely efficacious to promote up to a 10-fold increase in the production of highly infectious AAV vectors when produced in the presence of HSV. We think that this study will provide unique and important new insights in AAV biology toward the establishment of more successful production protocols.

7.
Trends Cell Biol ; 30(9): 676-687, 2020 09.
Article in English | MEDLINE | ID: mdl-32684321

ABSTRACT

The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Animals , Humans , Kinetochores/metabolism , Mitosis , Models, Biological , Phase Transition
8.
Nat Cell Biol ; 21(9): 1127-1137, 2019 09.
Article in English | MEDLINE | ID: mdl-31481798

ABSTRACT

The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere.


Subject(s)
Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Microtubules/metabolism , Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , Cytoskeleton/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mitosis
9.
Nat Commun ; 10(1): 682, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737408

ABSTRACT

Proper chromosome segregation depends upon kinetochore phosphorylation by the Chromosome Passenger Complex (CPC). Current models suggest the activity of the CPC decreases in response to the inter-kinetochore stretch that accompanies the formation of bi-oriented microtubule attachments, however little is known about tension-independent CPC phosphoregulation. Microtubule bundles initially lie in close proximity to inner centromeres and become depleted by metaphase. Here we find these microtubules control kinetochore phosphorylation by the CPC in a tension independent manner via a microtubule-binding site on the Borealin subunit. Disruption of Borealin-microtubule interactions generates reduced phosphorylation of prometaphase kinetochores, improper kinetochore-microtubule attachments and weakened spindle checkpoint signals. Experimental and modeling evidence suggests that kinetochore phosphorylation is greatly stimulated when the CPC binds microtubules that lie near the inner centromere, even if kinetochores have high inter-kinetochore stretch. We propose the CPC senses its local environment through microtubule structures to control phosphorylation of kinetochores.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomes/metabolism , Kinetochores/metabolism , Microtubules/metabolism , Cell Cycle Proteins/genetics , Humans , Microtubules/genetics , Mitosis/physiology , Phosphorylation , Protein Binding
10.
Nat Commun ; 9(1): 4275, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323222

ABSTRACT

Predicting the response and identifying additional targets that will improve the efficacy of chemotherapy is a major goal in cancer research. Through large-scale in vivo and in vitro CRISPR knockout screens in pancreatic ductal adenocarcinoma cells, we identified genes whose genetic deletion or pharmacologic inhibition synergistically increase the cytotoxicity of MEK signaling inhibitors. Furthermore, we show that CRISPR viability scores combined with basal gene expression levels could model global cellular responses to the drug treatment. We develop drug response evaluation by in vivo CRISPR screening (DREBIC) method and validated its efficacy using large-scale experimental data from independent experiments. Comparative analyses demonstrate that DREBIC predicts drug response in cancer cells from a wide range of tissues with high accuracy and identifies therapeutic vulnerabilities of cancer-causing mutations to MEK inhibitors in various cancer types.


Subject(s)
Antineoplastic Agents/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Combinatorial Chemistry Techniques , Drug Delivery Systems , Gene Knockout Techniques , Genetic Testing , Models, Biological , Pancreatic Neoplasms/genetics , Animals , Cell Cycle Checkpoints , Cell Death , Cell Line, Tumor , Drug Synergism , Humans , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Reproducibility of Results
11.
Mol Biol Cell ; 28(1): 54-64, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27807043

ABSTRACT

Centromeric chromatin is required for kinetochore assembly during mitosis and accurate chromosome segregation. A unique nucleosome containing the histone H3-specific variant CENP-A is the defining feature of centromeric chromatin. In humans, CENP-A nucleosome deposition occurs in early G1 just after mitotic exit at the time when the CENP-A deposition machinery localizes to centromeres. The mechanism by which CENP-A is deposited onto an existing, condensed chromatin template is not understood. Here we identify the selective association of the CENP-A chaperone HJURP with the condensin II complex and not condensin I. We show CAPH2 is present at centromeres during early G1 at the time when CENP-A deposition is occurring. CAPH2 localization to early G1 centromeres is dependent on HJURP. The CENP-A chaperone and assembly factor HJURP induces decondensation of a noncentromeric LacO array, and this decondensation is modulated by the condensin II complex. We show that condensin II function at the centromere is required for new CENP-A deposition in human cells. These data demonstrate that HJURP selectively recruits the condensin II chromatin-remodeling complex to facilitate CENP-A deposition in human cells.


Subject(s)
Autoantigens/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Adenosine Triphosphatases/metabolism , Centromere Protein A , Chromatin/metabolism , Chromatin Assembly and Disassembly/physiology , Chromosome Segregation/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , G1 Phase , Histones/metabolism , Humans , Mitosis , Multiprotein Complexes/metabolism , Nucleosomes , Protein Binding/physiology , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology , Succinate Dehydrogenase/metabolism
12.
Trends Biochem Sci ; 41(2): 160-174, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26705896

ABSTRACT

There is increasing evidence that regulators of the spindle checkpoint, kinetochore-microtubule attachments, and sister chromatid cohesion are part of an interconnected mitotic regulatory circuit with two positive feedback loops and the chromosome passenger complex (CPC) at its center. If true, this conceptual breakthrough needs to be integrated into models of mitosis. In this review, we describe this circuit and point out how the double feedback loops could provide insights into the self-organization of some mitotic processes and the autonomy of every chromosome on the mitotic spindle. We also provide working models for how mitotic events may be coordinated by this circuit.


Subject(s)
Centromere/metabolism , Mitosis , Signal Transduction
13.
Dev Biol ; 408(2): 345-57, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26391338

ABSTRACT

Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.


Subject(s)
Open Reading Frames , Xenopus/genetics , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Databases, Genetic , Disease/genetics , Genomics , Humans , Models, Genetic , Molecular Sequence Data , Sequence Homology, Nucleic Acid , Species Specificity , Xenopus Proteins/genetics , Xenopus laevis/genetics
14.
BMC Cancer ; 14: 287, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24758542

ABSTRACT

BACKGROUND: The DNA damage checkpoint signalling cascade sense damaged DNA and coordinates cell cycle arrest, DNA repair, and/or apoptosis. However, it is still not well understood how the signalling system differentiates between different kinds of DNA damage. N-nitroso-N-ethylurea (NEU), a DNA ethylating agent induces both transversions and transition mutations. METHODS: Immunoblot and comet assays were performed to detect DNA breaks and activation of the canonical checkpoint signalling kinases following NEU damage upto 2 hours. To investigate whether mismatch repair played a role in checkpoint activation, knock-down studies were performed while flow cytometry analysis was done to understand whether the activation of the checkpoint kinases was cell cycle phase specific. Finally, breast epithelial cells were grown as 3-dimensional spheroid cultures to study whether NEU can induce upregulation of vimentin as well as disrupt cell polarity of the breast acini, thus causing transformation of epithelial cells in culture. RESULTS: We report a novel finding that NEU causes activation of major checkpoint signalling kinases, Chk1 and Chk2. This activation is temporally controlled with Chk2 activation preceding Chk1 phosphorylation, and absence of cross talk between the two parallel signalling pathways, ATM and ATR. Damage caused by NEU leads to the temporal formation of both double strand and single strand breaks. Activation of checkpoints following NEU damage is cell cycle phase dependent wherein Chk2 is primarily activated during G2-M phase whilst in S phase, there is immediate Chk1 phosphorylation and delayed Chk2 response. Surprisingly, the mismatch repair system does not play a role in checkpoint activation, at doses and duration of NEU used in the experiments. Interestingly, NEU caused disruption of the well-formed polarised spheroid archithecture and upregulation of vimentin in three-dimensional breast acini cultures of non-malignant breast epithelial cells upon NEU treatment indicating NEU to have the potential to cause early transformation in the cells. CONCLUSION: NEU causes damage in mammalian cells in the form of double strand and single strand breaks that temporally activate the major checkpoint signalling kinases without the occurrence of cross-talk between the pathways. NEU also appear to cause transformation in three-dimensional spheroid cultures.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Transformation, Neoplastic/drug effects , Checkpoint Kinase 2/biosynthesis , Protein Kinases/biosynthesis , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Checkpoints/drug effects , Cell Transformation, Neoplastic/genetics , Checkpoint Kinase 1 , Checkpoint Kinase 2/metabolism , DNA Damage/drug effects , DNA Repair/drug effects , Ethylnitrosourea/pharmacology , Humans , Phosphorylation , Protein Kinases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL