Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 137(16): 5468-79, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25844713

ABSTRACT

To fully characterize the Co(III)-'nitrene radical' species that are proposed as intermediates in nitrene transfer reactions mediated by cobalt(II) porphyrins, different combinations of cobalt(II) complexes of porphyrins and nitrene transfer reagents were combined, and the generated species were studied using EPR, UV-vis, IR, VCD, UHR-ESI-MS, and XANES/XAFS measurements. Reactions of cobalt(II) porphyrins 1(P1) (P1 = meso-tetraphenylporphyrin (TPP)) and 1(P2) (P2 = 3,5-Di(t)Bu-ChenPhyrin) with organic azides 2(Ns) (NsN3), 2(Ts) (TsN3), and 2(Troc) (TrocN3) led to the formation of mono-nitrene species 3(P1)(Ns), 3(P2)(Ts), and 3(P2)(Troc), respectively, which are best described as [Co(III)(por)(NR″(•-))] nitrene radicals (imidyl radicals) resulting from single electron transfer from the cobalt(II) porphyrin to the 'nitrene' moiety (Ns: R″ = -SO2-p-C6H5NO2; Ts: R″ = -SO2C6H6; Troc: R″ = -C(O)OCH2CCl3). Remarkably, the reaction of 1(P1) with N-nosyl iminoiodane (PhI═NNs) 4(Ns) led to the formation of a bis-nitrene species 5(P1)(Ns). This species is best described as a triple-radical complex [(por(•-))Co(III)(NR″(•-))2] containing three ligand-centered unpaired electrons: two nitrene radicals (NR″(•-)) and one oxidized porphyrin radical (por(•-)). Thus, the formation of the second nitrene radical involves another intramolecular one-electron transfer to the "nitrene" moiety, but now from the porphyrin ring instead of the metal center. Interestingly, this bis-nitrene species is observed only on reacting 4(Ns) with 1(P1). Reaction of the more bulky 1(P2) with 4(Ns) results again in formation of mainly mono-nitrene species 3(P2)(Ns) according to EPR and ESI-MS spectroscopic studies. The mono- and bis-nitrene species were initially expected to be five- and six-coordinate species, respectively, but XANES data revealed that both mono- and bis-nitrene species are six-coordinate O(h) species. The nature of the sixth ligand bound to cobalt(III) in the mono-nitrene case remains elusive, but some plausible candidates are NH3, NH2(-), NsNH(-), and OH(-); NsNH(-) being the most plausible. Conversion of mono-nitrene species 3(P1)(Ns) into bis-nitrene species 5(P1)(Ns) upon reaction with 4(Ns) was demonstrated. Solutions containing 3(P1)(Ns) and 5(P1)(Ns) proved to be still active in catalytic aziridination of styrene, consistent with their proposed key involvement in nitrene transfer reactions mediated by cobalt(II) porphyrins.


Subject(s)
Cobalt/chemistry , Imines/chemistry , Metalloporphyrins/chemistry , Catalysis , Ligands , Models, Molecular , Oxidation-Reduction , Spectrum Analysis
2.
Angew Chem Int Ed Engl ; 53(43): 11452-7, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25213097

ABSTRACT

By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions.


Subject(s)
Heme/chemistry , Hemeproteins/chemistry , Seawater , Kinetics , Pressure , Thermodynamics
3.
Chemistry ; 20(17): 4880-4, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24664657

ABSTRACT

A cobalt-porphyrin catalyst encapsulated in a cubic M8 L6 cage allows cyclopropanation reactions in aqueous media. The caged-catalyst shows enhanced activities in acetone/water as compared to pure acetone. Interestingly, the M8 L6 encapsulated catalyst reveals size-selectivity. Smaller substrates more easily penetrate through the pores of the "molecular ship-in-a-bottle catalysts" and are hence converted faster than bigger substrates. In addition, N-tosylhydrazone sodium salts are easy to handle reagents for cyclopropanation reactions under these conditions.


Subject(s)
Cobalt/chemistry , Cyclopropanes/chemistry , Porphyrins/chemistry , Catalysis , Cobalt/administration & dosage , Cyclopropanes/administration & dosage , Iron Compounds/chemistry , Models, Molecular , Porosity
4.
J Am Chem Soc ; 136(7): 2699-702, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24471779

ABSTRACT

The new ligand N3Py(amide)SR and its Fe(II) complex [Fe(II)(N3Py(amide)SR)](BF4)2 (1) are described. Reaction of 1 with PhIO at -40 °C gives metastable [Fe(IV)(O)(N3Py(amide)SR)](2+) (2), containing a sulfide ligand and a single amide H-bond donor in proximity to the terminal oxo group. Direct evidence for H-bonding is seen in a structural analogue, [Fe(II)(Cl)(N3Py(amide)SR)](BF4)2 (3). Complex 2 exhibits rapid O-atom transfer (OAT) toward external sulfide substrates, but no intramolecular OAT. However, direct S-oxygenation does occur in the reaction of 1 with mCPBA, yielding sulfoxide-ligated [Fe(II)(N3Py(amide)S(O)R)](BF4)2 (4). Catalytic OAT with 1 was also observed.


Subject(s)
Iron/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Hydrogen Bonding , Kinetics
5.
Chemistry ; 19(31): 10170-8, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23821458

ABSTRACT

The synthesis of a new, cubic M8L6 cage is described. This new assembly was characterised by using NMR spectroscopy, DOSY, TGA, MS, and molecular modelling techniques. Interestingly, the enlarged cavity size of this new supramolecular assembly allows the selective encapsulation of tetra(4-pyridyl)metalloporphyrins (M(II)(TPyP), M = Zn, Co). The obtained encapsulated cobalt-porphyrin embedded in the cubic zinc-porphyrin assembly is the first example of a catalytically active encapsulated transition-metal complex in a cubic M8L6 cage. The substrate accessibility of this system was demonstrated through radical-trapping experiments, and its catalytic activity was demonstrated in two different radical-type transformations. The reactivity of the encapsulated Co(II)(TPyP) complex is significantly increased compared to free Co(II)(TPyP) and other cobalt-porphyrin complexes. The reactions catalysed by this system are the first examples of cobalt-porphyrin-catalysed radical-type transformations involving diazo compounds which occur inside a supramolecular cage.


Subject(s)
Cobalt/chemistry , Metalloporphyrins/chemistry , Models, Chemical , Zinc/chemistry , Azo Compounds/chemistry , Catalysis , Magnetic Resonance Spectroscopy , Molecular Structure
6.
Chemistry ; 19(30): 9800-6, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23744722

ABSTRACT

Crossing the line: A pH-induced "crossover" in 3D shapes of supramolecular constructs derived from trans(NH3)2Pt(II), [Pd(II)(en)], and the purine model nucleobase 9-methylhypoxanthine (see figure) is reported in which [Pd(en)(H2O)](2+) and [Pd(en)(OH)](+) are the decisive players (en = ethylenediamine).

8.
Chem Sci ; 4: 3917-3923, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-25426288

ABSTRACT

Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating reactivities of oxygen-containing metal complexes in a variety of biological and biomimetic reactions, including dioxygen activation/formation and functionalization of organic substrates. Mononuclear nonheme iron(III)-peroxo species are invoked as active oxygen intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes and their biomimetic compounds. Here, we report mononuclear nonheme iron(III)-peroxo complexes binding redox-inactive metal ions, [(TMC)FeIII(O2)]+-M3+ (M3+ = Sc3+ and Y3+; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), which are characterized spectroscopically as a 'side-on' iron(III)-peroxo complex binding a redox-inactive metal ion, (TMC)FeIII-(µ,η2:η2-O2)-M3+ (2-M). While an iron(III)-peroxo complex, [(TMC)FeIII(O2)]+, does not react with electron donors (e.g., ferrocene), one-electron reduction of the iron(III)-peroxo complexes binding redox-inactive metal ions occurs readily upon addition of electron donors, resulting in the generation of an iron(IV)-oxo complex, [(TMC)FeIV(O)]2+ (4), via heterolytic O-O bond cleavage of the peroxide ligand. The rates of the conversion of 2-M to 4 are found to depend on the Lewis acidity of the redox-inactive metal ions and the oxidation potential of the electron donors. We have also determined the fundamental electron-transfer properties of 2-M, such as the reduction potential and the reorganization energy in electron-transfer reaction. Based on the results presented herein, we have proposed a mechanism for the reactions of 2-M and electron donors; the reduction of 2-M to the reduced species, (TMC)FeII-(O2)-M3+ (2'-M), is the rate-determining step, followed by heterolytic O-O bond cleavage of the reduced species to form 4. The present results provide a biomimetic example demonstrating that redox-inactive metal ions bound to an iron(III)-peroxo intermediate play a significant role in activating the peroxide O-O bond to form a high-valent iron(IV)-oxo species.

SELECTION OF CITATIONS
SEARCH DETAIL