Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441541

ABSTRACT

In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties.


Subject(s)
Odorants , Olfactory Bulb , Animals , Mice , Olfactory Bulb/physiology , Smell/physiology , Behavior, Animal , Mammals
2.
Sci Rep ; 12(1): 20493, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36481924

ABSTRACT

Aerosols can transmit infectious diseases including SARS-CoV-2, influenza and norovirus. Flushed toilets emit aerosols that spread pathogens contained in feces, but little is known about the spatiotemporal evolution of these plumes or the velocity fields that transport them. Using laser light to illuminate ejected aerosols we quantify the kinematics of plumes emanating from a commercial flushometer-type toilet, and use the motion of aerosol particles to compute velocity fields of the associated flow. The toilet flush produces a strong chaotic jet with velocities exceeding 2 m/s; this jet transports aerosols to heights reaching 1.5 m within 8 seconds of initiating a flush. Quantifying toilet plumes and associated flow velocities provides a foundation for future design strategies to mitigate plume formation or to disinfect pathogens within it.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
5.
Phys Rev E ; 95(5-1): 053107, 2017 May.
Article in English | MEDLINE | ID: mdl-28618575

ABSTRACT

Inhalant flows draw fluid into an orifice from a reservoir and are ubiquitous in engineering and biology. Surprisingly, there is a lack of quantitative information on viscous inhalant flows. We consider here laminar flows (Reynolds number Re≤100) developing after impulsive inhalation begins. We implement finite element simulations of flows with varying Re and extraction height h (orifice height above a bottom bed). Numerical results are experimentally validated using particle image velocimetry measurements in a physical model for a representative flow case in the middle of the Re-h parameter space. We use two metrics to characterize the flow in space and time: regions of influence (ROIs), which describe the spatial extent of the flow field, and inhalation volumes, which describe the initial distribution of inhaled fluid. The transient response for all Re features an inviscid sinklike component at early times followed by a viscous diffusive component. At lower Re, diffusion entrains an increasing volume of fluid over time, enlarging the ROI indefinitely. In some geometries, these flows spatially bifurcate, with some fluid being inhaled through the orifice and some bypassing into recirculation. At higher Re, inward advection dominates outward viscous diffusion and the flow remains trapped in a sinklike state. Both ROIs and inhalation volumes are strongly dependent on Re and extraction height, suggesting that organisms or engineers could tune these parameters to achieve specific inhalation criteria.

SELECTION OF CITATIONS
SEARCH DETAIL