Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005267

ABSTRACT

The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.

2.
Res Sq ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464103

ABSTRACT

Acute myocardial infarction stands as a prominent cause of morbidity and mortality worldwide1-6. Clinical studies have demonstrated that the severity of cardiac injury following myocardial infarction exhibits a circadian pattern, with larger infarct sizes and poorer outcomes in patients experiencing morning onset myocardial infarctions7-14. However, the molecular mechanisms that govern circadian variations of myocardial injury remain unclear. Here, we show that BMAL114-20, a core circadian transcription factor, orchestrates diurnal variability in myocardial injury. Unexpectedly, BMAL1 modulates circadian-dependent cardiac injury by forming a transcriptionally active heterodimer with a non-canonical partner, hypoxia-inducible factor 2 alpha (HIF2A)6,21-23, in a diurnal manner. Substantiating this finding, we determined the cryo-EM structure of the BMAL1/HIF2A/DNA complex, revealing a previously unknown capacity for structural rearrangement within BMAL1, which enables the crosstalk between circadian rhythms and hypoxia signaling. Furthermore, we identified amphiregulin (AREG) as a rhythmic transcriptional target of the BMAL1/HIF2A heterodimer, critical for regulating circadian variations of myocardial injury. Finally, pharmacologically targeting the BMAL1/HIF2A-AREG pathway provides effective cardioprotection, with maximum efficacy when aligned with the pathway's circadian trough. Our findings not only uncover a novel mechanism governing the circadian variations of myocardial injury but also pave the way for innovative circadian-based treatment strategies, potentially shifting current treatment paradigms for myocardial infarction.

3.
Front Mol Biosci ; 10: 1290631, 2023.
Article in English | MEDLINE | ID: mdl-38028546

ABSTRACT

The Cyclin-dependent kinases (CDKs) play crucial roles in a range of essential cellular processes. While the classical two-step activation mechanism is generally applicable to cell cycle-related CDKs, both CDK7 and CDK8, involved in transcriptional regulation, adopt distinct mechanisms for kinase activation. In both cases, binding to their respective cyclin partners results in only partial activity, while their full activation requires the presence of an additional subunit. Recent structural studies of these two noncanonical kinases have provided unprecedented insights into their activation mechanisms, enabling us to understand how the third subunit coordinates the T-loop stabilization and enhances kinase activity. In this review, we summarize the structure and function of CDK7 and CDK8 within their respective functional complexes, while also describing their noncanonical activation mechanisms. These insights open new avenues for targeted drug discovery and potential therapeutic interventions in various diseases related to CDK7 and CDK8.

4.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36731470

ABSTRACT

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , RNA Polymerase II/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Promoter Regions, Genetic , Transcription, Genetic , Mediator Complex/genetics , Transcription Initiation, Genetic
5.
Biomedicines ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009485

ABSTRACT

Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.

6.
Proc Natl Acad Sci U S A ; 119(16): e2117857119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412907

ABSTRACT

The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC­derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a­regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.


Subject(s)
Bone Neoplasms , Carcinogenesis , E2F3 Transcription Factor , Gene Expression Regulation, Neoplastic , Induced Pluripotent Stem Cells , Osteosarcoma , Retinoblastoma Binding Proteins , Spliceosomes , Ubiquitin-Protein Ligases , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carcinogenesis/genetics , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Genes, Retinoblastoma , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Osteosarcoma/genetics , Osteosarcoma/pathology , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Science ; 373(6555): 662-673, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353949

ABSTRACT

The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair -/- and Pah R408W/R408W mice and improved the Phe tolerance of these mice.


Subject(s)
Phenylalanine Hydroxylase/metabolism , Phenylalanine/metabolism , Phenylketonurias/genetics , RNA, Long Noncoding/genetics , Acetylgalactosamine , Animals , Biopterins/analogs & derivatives , Biopterins/metabolism , Biopterins/therapeutic use , Diet , Disease Models, Animal , Female , Hepatocytes/metabolism , Humans , Liver/embryology , Liver/metabolism , Male , Mice , Mice, Knockout , Nucleic Acid Conformation , Phenylalanine/administration & dosage , Phenylalanine Hydroxylase/deficiency , Phenylalanine Hydroxylase/genetics , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Protein Binding , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/therapeutic use
8.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34375583

ABSTRACT

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Subject(s)
Adenosine/analogs & derivatives , Cell Cycle Proteins/genetics , Nerve Tissue Proteins/genetics , RNA Splicing Factors/genetics , RNA/genetics , Transcription Factors/genetics , Adenosine/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Humans , Methylation , Regulatory Elements, Transcriptional/genetics , Transcriptional Activation/genetics
9.
Cell Res ; 31(8): 861-885, 2021 08.
Article in English | MEDLINE | ID: mdl-34108665

ABSTRACT

The molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional "roadblocks" to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1-host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.


Subject(s)
Long Interspersed Nucleotide Elements , RNA , Gene Expression Regulation , Genome, Human , Humans , Long Interspersed Nucleotide Elements/genetics , RNA/genetics
10.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33827808

ABSTRACT

During transcription initiation, the general transcription factor TFIIH marks RNA polymerase II by phosphorylating Ser5 of the carboxyl-terminal domain (CTD) of Rpb1, which is followed by extensive modifications coupled to transcription elongation, mRNA processing, and histone dynamics. We have determined a 3.5-Å resolution cryo-electron microscopy (cryo-EM) structure of the TFIIH kinase module (TFIIK in yeast), which is composed of Kin28, Ccl1, and Tfb3, yeast homologs of CDK7, cyclin H, and MAT1, respectively. The carboxyl-terminal region of Tfb3 was lying at the edge of catalytic cleft of Kin28, where a conserved Tfb3 helix served to stabilize the activation loop in its active conformation. By combining the structure of TFIIK with the previous cryo-EM structure of the preinitiation complex, we extend the previously proposed model of the CTD path to the active site of TFIIK.

11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649230

ABSTRACT

Eukaryotes share a conserved messenger RNA (mRNA) decay pathway in which bulk mRNA is degraded by exoribonucleases. In addition, it has become clear that more specialized mRNA decay pathways are initiated by endonucleolytic cleavage at particular sites. The transfer RNA (tRNA) splicing endonuclease (TSEN) has been studied for its ability to remove introns from pre-tRNAs. More recently it has been shown that single amino acid mutations in TSEN cause pontocerebellar hypoplasia. Other recent studies indicate that TSEN has other functions, but the nature of these functions has remained obscure. Here we show that yeast TSEN cleaves a specific subset of mRNAs that encode mitochondrial proteins, and that the cleavage sites are in part determined by their sequence. This provides an explanation for the counterintuitive mitochondrial localization of yeast TSEN. To identify these mRNA target sites, we developed a "comPARE" (comparative parallel analysis of RNA ends) bioinformatic approach that should be easily implemented and widely applicable to the study of endoribonucleases. The similarity of tRNA endonuclease-initiated decay to regulated IRE1-dependent decay of mRNA suggests that mRNA specificity by colocalization may be an important determinant for the degradation of localized mRNAs in a variety of eukaryotic cells.


Subject(s)
Endoribonucleases , RNA Splicing/genetics , RNA Stability/genetics , RNA, Fungal , RNA, Messenger , RNA, Transfer , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Sci Adv ; 7(3)2021 01.
Article in English | MEDLINE | ID: mdl-33523904

ABSTRACT

The Cdk8 kinase module (CKM) in Mediator, comprising Med13, Med12, CycC, and Cdk8, regulates RNA polymerase II transcription through kinase-dependent and -independent functions. Numerous pathogenic mutations causative for neurodevelopmental disorders and cancer congregate in CKM subunits. However, the structure of the intact CKM and the mechanism by which Cdk8 is non-canonically activated and functionally affected by oncogenic CKM alterations are poorly understood. Here, we report a cryo-electron microscopy structure of Saccharomyces cerevisiae CKM that redefines prior CKM structural models and explains the mechanism of Med12-dependent Cdk8 activation. Med12 interacts extensively with CycC and activates Cdk8 by stabilizing its activation (T-)loop through conserved Med12 residues recurrently mutated in human tumors. Unexpectedly, Med13 has a characteristic Argonaute-like bi-lobal architecture. These findings not only provide a structural basis for understanding CKM function and pathological dysfunction, but also further impute a previously unknown regulatory mechanism of Mediator in transcriptional modulation through its Med13 Argonaute-like features.

13.
F S Sci ; 2(4): 383-395, 2021 11.
Article in English | MEDLINE | ID: mdl-35559861

ABSTRACT

OBJECTIVE: To identify, in myometrial stem/progenitor cells, the presumptive cell of origin for uterine fibroids, substrates of Mediator-associated cyclin dependent kinase 8/19 (CDK8/19), which is known to be disrupted by uterine fibroid driver mutations in Mediator complex subunit 12 (MED12). DESIGN: Experimental study. SETTING: Academic research laboratory. PATIENT(S): Women undergoing hysterectomy for uterine fibroids. INTERVENTION(S): Stable isotopic labeling of amino acids in cell culture (SILAC) coupled with chemical inhibition of CDK8/19 and downstream quantitative phosphoproteomics and transcriptomic analyses in myometrial stem/progenitor cells. MAIN OUTCOME MEASURE(S): High-confidence Mediator kinase substrates identified by SILAC-based quantitative phosphoproteomics were determined using an empirical Bayes analysis and validated orthogonally by in vitro kinase assay featuring reconstituted Mediator kinase modules comprising wild-type or G44D mutant MED12 corresponding to the most frequent uterine fibroid driver mutation in MED12. Mediator kinase-regulated transcripts identified by RNA sequencing were linked to Mediator kinase substrates by computational analyses. RESULT(S): A total of 296 unique phosphosites in 166 proteins were significantly decreased (≥ twofold) upon CDK8/19 inhibition, including 118 phosphosites in 71 nuclear proteins representing high-confidence Mediator kinase substrates linked to RNA polymerase II transcription, RNA processing and transport, chromatin modification, cytoskeletal architecture, and DNA replication and repair. Orthogonal validation confirmed a subset of these proteins, including Cut Like Homeobox 1 (CUX1) and Forkhead Box K1 (FOXK1), to be direct targets of MED12-dependent CDK8 phosphorylation in a manner abrogated by the most common uterine fibroid driver mutation (G44D) in MED12, implicating these substrates in disease pathogenesis. Transcriptome-wide profiling of Mediator kinase-inhibited myometrial stem/progenitor cells revealed alterations in cell cycle and myogenic gene expression programs to which Mediator kinase substrates could be linked directly. Among these, CUX1 is an established transcriptional regulator of the cell cycle whose corresponding gene on chromosome 7q is the locus for a recurrent breakpoint in uterine fibroids, linking MED12 and Mediator kinase with CUX1 for the first time in uterine fibroid pathogenesis. FOXK1, a transcriptional regulator of myogenic stem cell fate, was found to be coordinately enriched along with kinase, but not core, Mediator subunits in myometrial stem/progenitor cells compared with differentiated uterine smooth muscle cells. CONCLUSION(S): These studies identify a new catalog of pathologically and biologically relevant Mediator kinase substrates implicated in the pathogenesis of MED12 mutation-positive uterine fibroids, and further uncover a biochemical basis to link Mediator kinase activity with CUX1 and FOXK1 in the regulation of myometrial stem/progenitor cell fate.


Subject(s)
Leiomyoma , Mediator Complex , Bayes Theorem , Female , Forkhead Transcription Factors/metabolism , Humans , Leiomyoma/genetics , Mediator Complex/genetics , Myometrium/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism
14.
Elife ; 72018 02 20.
Article in English | MEDLINE | ID: mdl-29460780

ABSTRACT

Ribonucleotide reductases (RNRs) convert ribonucleotides into deoxyribonucleotides, a reaction essential for DNA replication and repair. Human RNR requires two subunits for activity, the α subunit contains the active site, and the ß subunit houses the radical cofactor. Here, we present a 3.3-Å resolution structure by cryo-electron microscopy (EM) of a dATP-inhibited state of human RNR. This structure, which was determined in the presence of substrate CDP and allosteric regulators ATP and dATP, has three α2 units arranged in an α6 ring. At near-atomic resolution, these data provide insight into the molecular basis for CDP recognition by allosteric specificity effectors dATP/ATP. Additionally, we present lower-resolution EM structures of human α6 in the presence of both the anticancer drug clofarabine triphosphate and ß2. Together, these structures support a model for RNR inhibition in which ß2 is excluded from binding in a radical transfer competent position when α exists as a stable hexamer.


Subject(s)
Protein Multimerization , Ribonucleotide Reductases/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Cryoelectron Microscopy , Cytidine Diphosphate/chemistry , Cytidine Diphosphate/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation , Ribonucleotide Reductases/metabolism
15.
Nature ; 544(7649): 196-201, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28241144

ABSTRACT

The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.


Subject(s)
Mediator Complex/chemistry , Mediator Complex/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/ultrastructure , Binding Sites , Cryoelectron Microscopy , Holoenzymes/chemistry , Holoenzymes/metabolism , Holoenzymes/ultrastructure , Mediator Complex/ultrastructure , Models, Molecular , Protein Binding , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/ultrastructure , Structure-Activity Relationship
16.
J Biol Chem ; 291(52): 26886-26898, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27821593

ABSTRACT

Mediator plays an integral role in activation of RNA polymerase II (Pol II) transcription. A key step in activation is binding of Mediator to Pol II to form the Mediator-Pol II holoenzyme. Here, we exploit a combination of biochemistry and macromolecular EM to investigate holoenzyme assembly. We identify a subset of human Mediator head module subunits that bind Pol II independent of other subunits and thus probably contribute to a major Pol II binding site. In addition, we show that binding of human Mediator to Pol II depends on the integrity of a conserved "hinge" in the middle module MED21-MED7 heterodimer. Point mutations in the hinge region leave core Mediator intact but lead to increased disorder of the middle module and markedly reduced affinity for Pol II. These findings highlight the importance of Mediator conformation for holoenzyme assembly.


Subject(s)
Holoenzymes/metabolism , Mediator Complex/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Holoenzymes/chemistry , Holoenzymes/genetics , Humans , Mediator Complex/chemistry , Mediator Complex/genetics , Protein Binding , Protein Conformation , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Transcription, Genetic
17.
Proc Natl Acad Sci U S A ; 112(44): 13543-8, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483468

ABSTRACT

The structure of a 33-protein, 1.5-MDa RNA polymerase II preinitiation complex (PIC) was determined by cryo-EM and image processing at a resolution of 6-11 Å. Atomic structures of over 50% of the mass were fitted into the electron density map in a manner consistent with protein-protein cross-links previously identified by mass spectrometry. The resulting model of the PIC confirmed the main conclusions from previous cryo-EM at lower resolution, including the association of promoter DNA only with general transcription factors and not with the polymerase. Electron density due to DNA was identifiable by the grooves of the double helix and exhibited sharp bends at points downstream of the TATA box, with an important consequence: The DNA at the downstream end coincides with the DNA in a transcribing polymerase. The structure of the PIC is therefore conducive to promoter melting, start-site scanning, and the initiation of transcription.


Subject(s)
DNA/chemistry , Multiprotein Complexes/chemistry , RNA Polymerase II/chemistry , Transcription Factors/chemistry , Transcription, Genetic , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , TATA Box/genetics , Transcription Factors/metabolism , Transcription Factors/ultrastructure , Transcription Factors, TFII/chemistry , Transcription Factors, TFII/metabolism , Transcription Factors, TFII/ultrastructure
18.
Nat Chem ; 6(12): 1065-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25411884

ABSTRACT

Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here, we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Šdiameter, cube-shaped cage with large openings into a 130 Šdiameter inner cavity. A crystal structure of the cage showed atomic-level agreement with the designed model, while electron microscopy, native mass spectrometry and small angle X-ray scattering revealed alternative assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will probably require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.


Subject(s)
Proteins/chemistry , Crystallography, X-Ray , Molecular Weight , Porosity , Scattering, Radiation
19.
Nat Cell Biol ; 16(9): 852-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25173975

ABSTRACT

Proper microtubule nucleation during cell division requires augmin, a microtubule-associated hetero-octameric protein complex. In current models, augmin recruits γ-tubulin, through the carboxyl terminus of its hDgt6 subunit to nucleate microtubules within spindles. However, augmin's biochemical complexity has restricted analysis of its structural organization and function. Here, we reconstitute human augmin and show that it is a Y-shaped complex that can adopt multiple conformations. Further, we find that a dimeric sub-complex retains in vitro microtubule-binding properties of octameric complexes, but not proper metaphase spindle localization. Addition of octameric augmin complexes to Xenopus egg extracts promotes microtubule aster formation, an activity enhanced by Ran-GTP. This activity requires microtubule binding, but not the characterized hDgt6 γ-tubulin-recruitment domain. Tetrameric sub-complexes induce asters, but activity and microtubule bundling within asters are reduced compared with octameric complexes. Together, our findings shed light on augmin's structural organization and microtubule-binding properties, and define subunits required for its function in organizing microtubule-based structures.


Subject(s)
Microtubule-Associated Proteins/chemistry , Animals , Cell-Free System , Escherichia coli , Humans , Metaphase , Microtubule-Associated Proteins/metabolism , Microtubules/chemistry , Microtubules/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , Protein Transport , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure , Xenopus laevis
20.
Cell ; 157(6): 1430-1444, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24882805

ABSTRACT

The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism.


Subject(s)
Mediator Complex/chemistry , Mediator Complex/ultrastructure , Cryoelectron Microscopy , HeLa Cells , Humans , Mediator Complex/metabolism , Models, Molecular , Protein Interaction Mapping , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...