Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 138: 104939, 2021 11.
Article in English | MEDLINE | ID: mdl-34656872

ABSTRACT

Computed tomography (CT) scans and magnetic resonance imaging (MRI) of spines are state-of-the-art for the evaluation of spinal cord lesions. This paper analyses micro-CT scans of rat spinal cords with the aim of generating lesion progression through the aggregation of anomaly-based scores. Since reliable labelling in spinal cords is only reasonable for the healthy class in the form of untreated spines, semi-supervised deviation-based anomaly detection algorithms are identified as powerful approaches. The main contribution of this paper is a large evaluation of different autoencoders and variational autoencoders for aggregated lesion quantification and a resulting spinal cord lesion quantification method that generates highly correlating quantifications. The conducted experiments showed that several models were able to generate 3D lesion quantifications of the data. These quantifications correlated with the weakly labelled true data with one model, reaching an average correlation of 0.83. We also introduced an area-based model, which correlated with a mean of 0.84. The possibility of the complementary use of the autoencoder-based method and the area feature were also discussed. Additionally to improving medical diagnostics, we anticipate features built on these quantifications to be useful for further applications like clustering into different lesions.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Animals , Cluster Analysis , Rats , Spinal Cord/diagnostic imaging
2.
Patterns (N Y) ; 1(8): 100144, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33294875

ABSTRACT

[This corrects the article DOI: 10.1016/j.patter.2020.100089.].

3.
Patterns (N Y) ; 1(6): 100089, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-33205132

ABSTRACT

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole-slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine-learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, the so-called generative adversarial networks (GANs) applied to histological image data. Besides improving performance, GANs also enable previously intractable application scenarios in this field. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs, and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.

SELECTION OF CITATIONS
SEARCH DETAIL