Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611144

ABSTRACT

A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol-gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol-gel transition to soft gel-strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications.

2.
ACS Macro Lett ; 12(12): 1614-1622, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37956439

ABSTRACT

We report on a single chain polymer gelator comprising an alginate backbone double grafted with thermoresponsive P(NIPAM86-co-NtBAM14)-NH2 polymer grafts and 3-aminophenylboronic acid moieties. The resulting polymer forms robust polymer networks resulting from three cooperative cross-linking mechanisms: (i) the hydrophobic association of the T-responsive polymer grafts above 24 °C, (ii) the formation of boronate esters between the boronic acid and the diols of the alginate backbone at physiological pH, and (iii) the ionic interactions of the residual carboxylate moieties with Ca2+ ions. The resulting material showed excellent tunability of the mechanical properties driven by stimuli combinations such as temperature, pH, or the addition of glucose as a network disruptor covering a storage modulus range from ∼260 Pa up to ∼1390 Pa by selective stimuli combinations. Also, the material was found to be nontoxic and could form arbitrary structures via 3D printing that can undergo multi-stimuli-responsive erosion profiles.

3.
Gels ; 9(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504391

ABSTRACT

We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.

4.
Carbohydr Polym ; 312: 120790, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059530

ABSTRACT

In this work a dual crosslinked network based on sodium alginate graft copolymer, bearing poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) P(NIPAM-co-NtBAM) side chains was developed and examined as a shear thinning soft gelating bioink. The copolymer was found to undergo a two-step gelation mechanism; in the first step a three-dimensional (3D) network is formed through ionic interactions between the negatively ionized carboxylic groups of the alginate backbone and the positive charges of Ca2+ divalent cations, according to the "egg-box" mechanism. The second gelation step occurs upon heating which triggers the hydrophobic association of the thermoresponsive P(NIPAM-co-NtBAM) side chains, increasing the network crosslinking density in a highly cooperative manner. Interestingly, the dual crosslinking mechanism resulted in a five-to-eight-fold improvement of the storage modulus implying reinforced hydrophobic crosslinking above the critical thermo-gelation temperature which is further boosted by the ionic crosslinking of the alginate backbone. The proposed bioink could form arbitrary geometries under mild 3D printing conditions. Last, it is demonstrated that the proposed developed bioink can be further utilized as bioprinting ink and showcased its ability to promote human periosteum derived cells (hPDCs) growth in 3D and their capacity to form 3D spheroids. In conclusion, the bioink, owing its ability to reverse thermally the crosslinking of its polymer network, can be further utilized for the facile recovery of the cell spheroids, implying its promising potential use as cell spheroid-forming template bionk for applications in 3D biofabrication.


Subject(s)
Alginates , Hydrogels , Humans , Hydrogels/chemistry , Alginates/chemistry , Cell Proliferation , Printing, Three-Dimensional , Polymers , Tissue Engineering , Tissue Scaffolds/chemistry
5.
Gels ; 9(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36975684

ABSTRACT

Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.

6.
Gels ; 8(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36547341

ABSTRACT

In this study we report the rheological behavior of aqueous solutions of an amphiphilic graft copolymer constituting a polyacrylic acid (PAA) grafted by poly(boc-L-lysine), P(b-LL). Due to the highly hydrophobic nature of the grafted chains, the copolymer self-assembles spontaneously in aqueous media forming three-dimensional (3D) finite size networks (microgels). The rheological analysis demonstrated that the copolymer behaves as a strong elastic hydrogel, showing characteristics of a "frozen" network. Moreover, it is noteworthy that the formulation shows the above-described characteristics in very small concentrations (0.25-1.20 wt%) compared to other naturally cross-linked hydrogels that have been studied so far. Concentration significantly affects the rheological properties of the hydrogel, showing considerable increase in elastic modulus, following the scaling law G'~C1.93. At the same time, the hydrogels can be described as intelligent stimuli-responsive systems, showing pH and shear responsiveness as well as stability with temperature changes. Thanks to the pH dependance of the degree of ionization of the weak polyelectrolyte PAA backbone, stiffness and swelling of the hydrogels can be tuned effectively by adjusting the pH conditions. Simulating conditions such as those of injection through a 28-gauge syringe needle, the gel demonstrates excellent response to shear, due to its remarkable shear thinning behavior. The combination of pH-sensitivity and shear responsiveness leads to excellent injectability and self-healing properties, given that it flows easily upon applying a low stress and recovers instantly in the site of injection. Therefore, the physically cross-linked PAA-g-P(b-LL) hydrogel exhibits remarkable features, namely biocompatibility, biodegradability of cross-links, pH responsiveness, shear-induced injectability and instantaneous self-healing, making it a potential candidate for various biomedical applications.

7.
Molecules ; 27(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744890

ABSTRACT

Here, we describe the preparation and characterization of organic/inorganic hybrid polymer multifunctional nanocarriers. Novel nanocomposites of gold nanoparticles using pH-responsive coordination pentablock terpolymers of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide)-b-poly(ε-caprolactone), bearing or not bearing partially quaternized vinylpyridine moieties, were studied. The template morphology of the coordination pentablock terpolymer at physiological pH ranges from crew-cut to multicompartmentalized micelles which can be tuned by chemical modification of the central block. Additionally, the presence of 2VP groups allows the coordination of gold ions, which can be reduced in situ to construct gold@polymer nanohybrids. Furthermore, the possibility of tuning the gold distribution in the micelles, through partial quaternization of the central P2VP block, was also investigated. Various morphological gold colloidal nanoparticles such as gold@core-corona nanoparticles and gold@core-gold@corona nanoparticles were synthesized on the corresponding template of the pentablock terpolymer, first by coordination with gold ions, followed by reduction with NaBH4. The pentablock and gold@pentablock nanoparticles could sparingly accommodate a water-soluble drug, Tamoxifen (TAX), in their hydrophobic micellar cores. The nanostructure of the nanocarrier remarkably affects the TAX delivery kinetics. Importantly, the hybrid gold@polymer nanoparticles showed prolonged release profiles for the guest molecule, relative to the corresponding bare amphiphilic pentablock polymeric micelles. These Gold@pentablock terpolymer hybrid nanoparticles could act as a multifunctional theranostic nanoplatform, integrating sustainable pH-controlled drug delivery, diagnostic function and photothermal therapy.


Subject(s)
Metal Nanoparticles , Micelles , Gold/chemistry , Kinetics , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Tamoxifen
8.
Polymers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215715

ABSTRACT

Polylysine is a biocompatible, biodegradable, water soluble polypeptide. Thanks to the pendant primary amines it bears, it is susceptible to modification reactions. In this work Poly(L-lysine) (PLL) was partially modified via the effortless free-catalysed aza-Michael addition reaction at room temperature by grafting N-isopropylacrylamide (NIPAm) moieties onto the amines. The resulting PLL-g-NIPAm exhibited LCST-type thermosensitivity. The LCST can be tuned by the NIPAm content incorporated in the macromolecules. Importantly, depending on the NIPAm content, LCST is highly dependent on pH and ionic strength due to ionization capability of the remaining free lysine residues. PLL-g-NIPAm constitutes a novel biodegradable LCST polymer that could be used as "smart" block in block copolymers and/or terpolymers, of any macromolecular architecture, to design pH/Temperature-responsive self-assemblies (nanocarriers and/or networks) for potential bio-applications.

9.
Polymers (Basel) ; 13(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920243

ABSTRACT

We report the preparation of mesoporous silica nanoparticles covered by layer by layer (LbL) oppositely charged weak polyelectrolytes, comprising poly(allylamine hydrochloride) (PAH) and a sodium alginate, highly grafted by N-isopropylacrylamide/N-tert-butylacrylamide random copolymers, NaALG-g-P(NIPAM90-co-NtBAM10) (NaALG-g). Thanks to the pH dependence of the degree of ionization of the polyelectrolytes and the LCST-type thermosensitivity of the grafting chains of the NaALG-g, the as-prepared hybrid nanoparticles (hNP) exhibit pH/thermo-responsive drug delivery capabilities. The release kinetics of rhodamine B (RB, model drug) can be controlled by the number of PAH/NaALG-g bilayers and more importantly by the environmental conditions, namely, pH and temperature. As observed, the increase of pH and/or temperature accelerates the RB release under sink conditions. The same NaALG-g was used as gelator to fabricate a hNP@NaALG-g hydrogel composite. This formulation forms a viscous solution at room temperature, and it is transformed to a self-assembling hydrogel (sol-gel transition) upon heating at physiological temperature provided that its Tgel was regulated at 30.7 °C, by the NtBAM hydrophobic monomer incorporation in the side chains. It exhibits excellent injectability thanks to its combined thermo- and shear-responsiveness. The hNP@NaALG-g hydrogel composite, encapsulating hNP covered with one bilayer, exhibited pH-responsive sustainable drug delivery. The presented highly tunable drug delivery system (DDS) (hNP and/or composite hydrogel) might be useful for biomedical potential applications.

10.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917134

ABSTRACT

Graft copolymers of alginate backbone and N-isopropylacrylamide/N-tert-butylacrylamide random copolymer, P(NIPAMx-co-NtBAMy), side chains (stickers) with various NtBAM content were designed and explored in aqueous media. Self-assembling thermoresponsive hydrogels are formed upon heating, in all cases, through the hydrophobic association of the P(NIPAMx-co-NtBAMy) sticky pendant chains. The rheological properties of the formulations depend remarkably on the NtBAM hydrophobic content, which regulates the lower critical solution temperature (LCST) and, in turn, the stickers' thermo-responsiveness. The gelation point, Tgel, was shifted to lower temperatures from 38 to 20 °C by enriching the PNIPAM chains with 20 mol % NtBAM, shifting accordingly to the gelation temperature window. The consequences of the Tgel shift to the hydrogels' rheological properties are significant at room and body temperature. For instance, at 37 °C, the storage modulus increases about two orders of magnitude and the terminal relaxation time increase about 10 orders of magnitude by enriching the stickers with 20 mol % hydrophobic moieties. Two main thermo-induced behaviors were revealed, characterized by a sol-gel and a weak gel-stiff gel transition for the copolymer with stickers of low (0.6 mol %) and high (14, 20 mol %) NtBAM content, respectively. The first type of hydrogels is easily injectable, while for the second one, the injectability is provided by shear-thinning effects. The influence of the type of media (phosphate buffer (PB), phosphate-buffered saline (PBS), Dulbecco's modified Eagle's medium (DMEM)) on the hydrogel properties was also explored and discussed. The 4 wt % NaALG-g-P(NIPAM80-co-NtBAM20)/DMEM formulation showed excellent shear-induced injectability at room temperature and instantaneous thermo-induced gel stiffening at body temperature, rendering it a good candidate for cell transplantation potential applications.


Subject(s)
Acrylamides/chemistry , Alginates/chemistry , Biopolymers/chemistry , Hydrogels/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Rheology , Temperature
12.
Carbohydr Polym ; 219: 344-352, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31151534

ABSTRACT

Sodium alginate grafted by a thermo-responsive copolymer of N-isopropylacrylamide, enriched with the hydrophobic N-tert-butylacrylamide monomer, (P(NIPAM-co-NtBAM)-NH2) was synthesized and its thermo- and shear-induced responsive capabilities were studied through rheology. The graft copolymer formed a 3D network through thermo-induced hydrophobic association of the thermo-responsive P(NIPAM-co-NtBAM) side chains in water. By applying the frequency-temperature superposition principle, the terminal relaxation time, τ and the shear viscosity, as a function of temperature were evaluated. Both parameters increased exponentially upon heating orders of magnitude, 15 °C above the onset of gelation (35 °C). It is shown that the thermo-induced thickening effect was mainly due to the slowdown of the P(NIPAM90-co-NtBAM10) associative side chains exchange dynamics. Moreover, combination of shear- and thermo-responsiveness provided excellent hydrogel injectability with instantaneous gelation at physiological temperature. The better insight of the thermo-thickening mechanism through oscillatory rheology allows precise tuning of the carbohydrate-based hydrogel properties towards potential bioapplications.

13.
Polymers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906238

ABSTRACT

Poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) linear diblock copolymer and polystyrene-poly(ethylene oxide) (PS10PEO10) heteroarm star copolymer were used as building elements to prepare organic-inorganic hybrids. By using the layer-by-layer (LbL) methodology, these elements were integrated on mesoporous silica through non-covalent interactions, namely, ionic and H-bonding. For the latter, tannic acid (TA) was used as an intermediate layer. The deposition of the various layers was monitored by thermogravimetric analysis (TGA), electrophoretic measurements, and confocal microscopy. The final silica hybrid, bearing alternating P2VP-b-PEO and PS10PEO10 star layers was capable of carrying one hydrophilic and two hydrophobic chemical species in distinct compartments. These multicompartmental organic-inorganic hybrids could be used as nanostructured carriers for pH-responsive multiple drug delivery and potential theranostic applications.

14.
Nanoscale ; 11(3): 915-931, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30298899

ABSTRACT

3-Arm PMMAs end-functionalized by pyrene were designed as dispersing/stabilizing agents for the liquid-phase exfoliation of graphite in low-boiling point solvents like chloroform. The synthetic procedure comprised ARGET ATRP controlled polymerization, click chemistry and the quaternization reaction of triazole, ensuring tailor-made, well-defined pyrene-functional star PMMAs. Among a series of different pyrene-functional macromolecular topologies, the (PMMA-py2)3 proved the most efficient exfoliation agent giving relatively high graphene concentration (0.36 mg ml-1) at exceptionally low polymer/graphite mass ratio (mP/mGF = 0.003) and short sonication time (3 h). A 5-cycle iterative procedure relying on the redispersion of the sediment was developed yielding CG = 1.29 mg ml-1 with 14.8% exfoliation yield, under the favorable conditions of 10.5 h total shear mixing/tip sonication time and overall mP/mGF ratio as low as 0.15. In parallel, all-atom molecular dynamics simulations were conducted which helped understand the mechanism by which pyrene-functional macromolecular topologies act as efficient dispersing agents of graphene. Finally the G@(PMMA-Py)3 hybrids were well dispersed into the PMMA matrix by electrospinning to fabricate graphene-based nanocomposite fibrous veils. These graphene/polymer nanocomposites exhibited enhanced stiffness and strength by a factor of 4.4 with 1.5 wt% graphene hybrids as nanofillers.

15.
ACS Omega ; 3(9): 11896-11908, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30320280

ABSTRACT

We report the fabrication of polymersomes, using as building blocks star-graft quarterpolymers, composed of hydrophobic polystyrene and pH-sensitive poly(2-vinylpyridine)-b-poly(acrylic acid) (P2VP-b-PAA) arms, emanated from a common nodule, enriched by thermosensitive poly(N-isopropylacrylamide) grafts covalently bonded on the PAA block-arms. These multicompartmental polymersomes were evaluated as nanocarriers for the encapsulation and controlled co-delivery of doxorubicin (hydrophilic) and paclitaxel (hydrophobic) chemotherapeutic agents. The polymersomes can load these drugs in different compartments and can efficiently be internalized in the human lung adenocarcinoma epithelial cells, delivering their cargo and inducing high cell apoptosis. The release kinetics of both anticancer agents was controlled differently by the environmental conditions (pH and temperature). Enhanced release was observed at the acidic pH 6.0 and under physiological temperature (37 °C). At the same total drug level, co-delivery of these drugs with the polymersomes caused enhanced cytotoxicity and induced significantly higher cell apoptosis in the cancer cell line compared to the polymersomes loaded with either of the two drugs.

16.
Int J Biol Macromol ; 112: 273-283, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29391227

ABSTRACT

The accumulation efficiency and the properties of polyhydroxyalkanoates (PHAs) produced from acidified waste glycerol (AWG) and its derivatives via an enriched microbial consortium derived from soil, were investigated in this study. AWG consisted mainly from short chain fatty acids, 1,3 propanediol and residual glycerol, which were also evaluated individually as substrates. Accumulation capacity and yields were estimated after solvent extraction and purification and PHAs were further analyzed in terms of their chemical structure, thermal properties, molecular masses and mechanical properties. The lowest accumulation capacity was noticed for non-acidified waste glycerol as carbon source which led to the generation of P(3HB), whereas for the other carbon sources co-polymers of 3HB with 3HV or 3HHx were produced. Average molecular mass weights were quite high in all cases reaching ~1.8×106Da. The thermal properties and the mechanical behavior of PHAs were shown to be highly affected by their monomeric composition, whereas it was also concluded that DSC and DMA results were in good agreement.


Subject(s)
Biodegradation, Environmental , Fatty Acids, Volatile/chemistry , Polyhydroxyalkanoates/chemistry , Soil Microbiology , Carbon/chemistry , Glycerol/chemistry , Molecular Weight , Refuse Disposal
17.
Eur J Pharm Sci ; 117: 177-186, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29477643

ABSTRACT

Paclitaxel (PTX)-loaded gold nanoparticles functionalized with mercaptooctanoic acid (MOA) and folic acid (FA) (AuMOA-FA) were encapsulated within pH-sensitive poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP-PEO) vesicles with the aim to develop a more selective injectable nano-formulation for PTX, lacking the side effects of the conventional PTX delivery system. The size of the resulting composite vesicles was lower than 200 nm, i.e. it is suitable for tumor targeting applications taking advantage of the enhanced permeability and retention (EPR) effect. The vesicles did not aggregate in the presence of high electrolyte concentrations, indicating the colloidal stability of the vesicles. The vesicles did not leak their AuMOA-FA or PTX content at physiological pH of 7.4. However, AuMOA-FA and PTX release were significantly accelerated at acidic pHs resembling tumor environment and acidic intracellular compartments. PTX release from the vesicles at acidic pH apparently follows AuMOA-FA release from the vesicles. Flow cytometry measurements and confocal laser scanning microscopy images showed that the vesicles could enter A549 cancer cells in culture and that cellular uptake increased with time. Blank vesicles did not exhibit cytotoxicity and did not induce apoptosis in A549 cancer cells. The PTX currying vesicles exhibited comparable or a little higher cytotoxicity than free PTX. Both the PTX currying vesicles and free PTX induced A549 cells apoptosis, however the vesicle-encapsulated PTX induced a higher percentage of late apoptotic cells than free PTX.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Drug Carriers , Gold/chemistry , Metal Nanoparticles , Paclitaxel/chemistry , A549 Cells , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Caprylates/chemistry , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Drug Stability , Folic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Nanotechnology , Paclitaxel/metabolism , Paclitaxel/pharmacology , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Solubility , Technology, Pharmaceutical/methods , Time Factors
18.
Soft Matter ; 13(19): 3568-3579, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28443918

ABSTRACT

We investigate the influence of pH on the rheological and structural properties of hydrogels formed by hydrophobic association of the sticky ends of the triblock terpolymer poly(methyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate-co-methacrylic acid)-b-poly(methyl methacrylate) (PMMA-b-P(DEA-co-MAA)-b-PMMA). The middle block is a weak polyampholyte having a pH dependent charge density and sign, which enables tuning of the rheological and structural properties by pH variation. Small-angle neutron scattering (SANS) studies of solutions in D2O at 0.05 wt% and pH 3.0 reveal clusters of interconnected spherical micelles having PMMA cores, stabilized by repulsive ionic interactions in the middle polyampholyte block. With increasing pH, the degree of ionization of the DEA units decreases, whereas the one of the MAA units increases, resulting in a complete loss of the correlation between these micelles. At a concentration of 3 wt% at low pH values, the system forms a gel with charged fuzzy spheres from PMMA interacting via a screened Coulomb potential. With increasing pH, the gel disintegrates due to the decrease in the effective charge on the micelles. At both concentrations, the hydrophobic aggregation of micelles is observed near the isoelectric point. At pH 3.0-7.4, the autocorrelation functions measured by rotational dynamic light scattering at 3 wt% exhibit a decay steeper than single exponential, which confirms that the gels are frozen, presumably due to the glassy PMMA cores and hydrophobic interpolyelectrolyte complexes. At pH 11, the diffusion of single micelles is observed in addition to the frozen dynamics.

19.
Gels ; 3(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-30920500

ABSTRACT

The present review article highlights a specific class of responsive polymer-based hydrogels which are formed through association of oppositely charged polyion segments. The underpinning temporary three-dimensional network is constituted of hydrophilic chains (either ionic or neutral) physically crosslinked by ion pair formation arising from intermolecular polyionic complexation of oppositely charged repeating units (polyacid/polybase ionic interactions). Two types of hydrogels are presented: (i) hydrogels formed by triblock copolymers bearing oppositely charged blocks (block copolyampholytes), forming self-assembled networks; and (ii) hydrogels formed by co-assembly of oppositely charged polyelectrolyte segments belonging to different macromolecules (either block copolymers or homopolyelectrolytes). Due to the weak nature of the involved polyions, these hydrogels respond to pH and are sensitive to the presence of salts. Discussing and evaluating their solution, rheological and structural properties in dependence on pH and ionic strength, it comes out that the hydrogel properties are tunable towards potential applications.

20.
ACS Appl Mater Interfaces ; 8(27): 17539-48, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27341446

ABSTRACT

We explore the self-assembly behavior of aqueous solutions of an amphiphilic, pH-sensitive poly(l-alanine)-b-poly(l-glutamic acid)-b-poly(l-alanine), (A5E11A5) triblock copolypeptide, end-capped by benzaldehyde through Schiff base reaction. At elevated concentrations and under physiological pH (7.4) and ionic strength (0.15M), the bare copolypeptide aqueous solutions underwent a sol-gel transition after heating and slow cooling thermal treatment, forming opaque stiff gels due to a hierarchical self-assembly that led to the formation of ß-sheet-based twisted super fibers (Popescu et al. Soft Matter 2015, 11, 331-342). The conjugation of the N-termini with benzaldehyde (Bz) through a Schiff base reaction amplifies the copolypeptide pH-sensitivity within a narrow pH window relevant for in vivo applications. Specifically, the dynamic character of the imine bond allowed coupling/decoupling of the Bz upon switching pH. The presence of Bz conjugates to the N-termini of the copolypeptide resulted in enhanced packing of the elementary superfibers into thick and short piles, which inhibited the ability of the system for gelation. However, partial cleavage of Bz upon lowering pH to 6.5 prompted recovery of the hydrogel. The sol-gel transition triggered by pH was reversible, due to the coupling/decoupling of the benzoic-imine dynamic covalent bonding, endowing thus the gelling system with injectability. Undesirably, the gelation temperature window was significantly reduced, which however can be regulated at physiological temperatures by using a suitable mixture of the bare and the Bz-conjugated coplypeptide. This triblock copolypeptide gelator was investigated as a scaffold for the encapsulation of polymersome nanocarriers, loaded with a hydrophilic model drug, calcein. The polymersome/polypeptide complex system showed prolonged probe release in pH 6.5, which is relevant to extracellular tumor environment, rendering the system potentially useful for sustained delivery of anticancer drugs locally in the tumor.

SELECTION OF CITATIONS
SEARCH DETAIL