Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36106561

ABSTRACT

Summary: Hepatocyte nuclear factor 1ß (HNF1B) gene is located on chromosome 17q12. It is a transcription factor implicated in the early embryonic development of multiple organs. HNF1B-associated disease is a multi-system disorder with variable clinical phenotypes. There are increasing reports suggesting that the 17q12 deletion syndrome should be suspected in patients with maturity-onset diabetes of the young type 5 (MODY5) due to the deletion of HNF1B gene. In contrast to classical 17q12 syndrome in childhood with neurological disorders and autism, patients with HNF1B-MODY deletion rarely had neuropsychological disorders or learning disabilities. The diagnosis of 17q12 deletion syndrome highlighted the phenotypic heterogeneity of HNF1B-MODY patients. In this study, we report the clinical course of a Thai woman with young-onset diabetes mellitus and hypertriglyceridemia as a predominant feature due to HNF1B deletion as part of the 17q12 deletion syndrome. Our findings and others suggest that hypertriglyceridemia should be considered a syndromic feature of HNF1B-MODY. Our case also highlights the need to use sequencing with dosage analyses to detect point mutations and copy number variations to avoid missing a whole deletion of HNF1B. Learning points: Maturity-onset diabetes of the young type 5 (MODY5) may be caused by heterozygous point mutations or whole gene deletion of HNF1B. Recent studies revealed that complete deletion of the HNF1B gene may be part of the 17q12 deletion syndrome with multi-system involvement. The length of the deletion can contribute to the phenotypic variability in patients with HNF1B-MODY due to whole gene deletion. Using next-generation sequencing alone to diagnose MODY could miss a whole gene deletion or copy number variations. Specialized detection methods such as microarray analysis or low-pass whole genome sequencing are required to accurately diagnose HNF1B-MODY as a component of the 17q12 deletion syndrome. Molecular diagnosis is necessary to distinguish other acquired cystic kidney diseases in patients with type 2 diabetes which could phenocopy HNF1B-MODY. Hypertriglyceridemia is a possible metabolic feature in patients with HNF1B-MODY due to 17q12 deletion syndrome.

2.
Front Endocrinol (Lausanne) ; 12: 690343, 2021.
Article in English | MEDLINE | ID: mdl-34630320

ABSTRACT

Glucokinase-Maturity-Onset Diabetes of the Young (GCK-MODY) is characterized by asymptomatic, non-progressive and fasting hyperglycemia, albeit not without phenotypic variability. We used next generation sequencing (NGS) to screen for 34 MODY genes in a non-obese person with familial young-onset diabetes followed by screening in 24 family members within three generations with varying presentations of young-onset diabetes and sensorineural hearing loss. The index patient was found to carry a paternally-inherited heterozygous missense variant (c.716 A>G) of GCK in exon 7 with amino acid change (Q239R). This variant was associated with phenotypic heterogeneity ranging from normal glucose tolerance to diabetes with complications amongst the siblings which might be modified by obesity and chronic hepatitis B infection. Two paternally-inherited variants of SLC29A3 encoding a nucleoside transporter protein and Apo-A1 genes also co-segregated with glucose and lipid traits. Co-occurrence of diabetes and deafness in maternal aunts led to discovery of WFS1 (Wolfram syndrome type 1) as a cause of non-syndromic deafness in multiple members of the maternal pedigree. Our findings highlight the complex causes of familial young-onset diabetes and the need of a multidisciplinary approach to interpret the clinical relevance of discoveries made by NGS in this era of genomic medicine.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucokinase/genetics , Mutation, Missense , Pedigree , Phenotype , Adult , Aged , Female , Genetic Heterogeneity , Genomic Medicine , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...