Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Mar Life Sci Technol ; 6(2): 198-211, 2024 May.
Article En | MEDLINE | ID: mdl-38827133

Bacteria with functional DNA repair systems are expected to have low mutation rates due to strong natural selection for genomic stability. However, our study of the wild-type Streptococcus pneumoniae D39, a pathogen responsible for many common diseases, revealed a high spontaneous mutation rate of 0.02 per genome per cell division in mutation-accumulation (MA) lines. This rate is orders of magnitude higher than that of other non-mutator bacteria and is characterized by a high mutation bias in the A/T direction. The high mutation rate may have resulted from a reduction in the overall efficiency of selection, conferred by the tiny effective population size in nature. In line with this, S. pneumoniae D39 also exhibited the lowest DNA mismatch-repair (MMR) efficiency among bacteria. Treatment with the antibiotic penicillin did not elevate the mutation rate, as penicillin did not induce DNA damage and S. pneumoniae lacks a stress response pathway. Our findings suggested that the MA results are applicable to within-host scenarios and provide insights into pathogen evolution. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00220-6.

2.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Article En | MEDLINE | ID: mdl-38012814

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Ceftriaxone , Enterococcus , Humans , Phosphorylation , Enterococcus/metabolism , Peptidoglycan/metabolism , Enterococcus faecalis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Mol Microbiol ; 118(4): 336-368, 2022 10.
Article En | MEDLINE | ID: mdl-36001060

RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.


Peptidoglycan , Streptococcus pneumoniae , Peptidoglycan/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/metabolism , Cell Division/genetics
4.
Front Microbiol ; 12: 780864, 2021.
Article En | MEDLINE | ID: mdl-34938281

The bacterial FtsZ-ring initiates division by recruiting a large repertoire of proteins (the divisome; Z-ring) needed for septation and separation of cells. Although FtsZ is essential and its role as the main orchestrator of cell division is conserved in most eubacteria, the regulators of Z-ring presence and positioning are not universal. This study characterizes factors that regulate divisome presence and placement in the ovoid-shaped pathogen, Streptococcus pneumoniae (Spn), focusing on FtsZ, EzrA, SepF, ZapA, and ZapJ, which is reported here as a partner of ZapA. Epi-fluorescence microscopy (EFm) and high-resolution microscopy experiments showed that FtsZ and EzrA co-localize during the entire Spn cell cycle, whereas ZapA and ZapJ are late-arriving divisome proteins. Depletion and conditional mutants demonstrate that EzrA is essential in Spn and required for normal cell growth, size, shape homeostasis, and chromosome segregation. Moreover, EzrA(Spn) is required for midcell placement of FtsZ-rings and PG synthesis. Notably, overexpression of EzrA leads to the appearance of extra Z-rings in Spn. Together, these observations support a role for EzrA as a positive regulator of FtsZ-ring formation in Spn. Conversely, FtsZ is required for EzrA recruitment to equatorial rings and for the organization of PG synthesis. In contrast to EzrA depletion, which causes a bacteriostatic phenotype in Spn, depletion of FtsZ results in enlarged spherical cells that are subject to LytA-dependent autolysis. Co-immunoprecipitation and bacterial two-hybrid assays show that EzrA(Spn) is in complexes with FtsZ, Z-ring regulators (FtsA, SepF, ZapA, MapZ), division proteins (FtsK, StkP), and proteins that mediate peptidoglycan synthesis (GpsB, aPBP1a), consistent with a role for EzrA at the interface of cell division and PG synthesis. In contrast to the essentiality of FtsZ and EzrA, ZapA and SepF have accessory roles in regulating pneumococcal physiology. We further show that ZapA interacts with a non-ZapB homolog, named here as ZapJ, which is conserved in Streptococcus species. The absence of the accessory proteins, ZapA, ZapJ, and SepF, exacerbates growth defects when EzrA is depleted or MapZ is deleted. Taken together, these results provide new information about the spatially and temporally distinct proteins that regulate FtsZ-ring organization and cell division in Spn.

5.
Mol Microbiol ; 115(6): 1152-1169, 2021 06.
Article En | MEDLINE | ID: mdl-33269494

Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid-shaped Streptococcus pneumoniae (Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D-SIM (structured-illumination microscopy). Labeling with fluorescent D-amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin-binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading-edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA-marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced "nodes" of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.


Cell Division/physiology , Peptidoglycan/biosynthesis , Streptococcus pneumoniae/metabolism , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Fluorescent Dyes , Penicillin-Binding Proteins/metabolism , Peptidyl Transferases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development
6.
Proc Natl Acad Sci U S A ; 116(8): 3211-3220, 2019 02 19.
Article En | MEDLINE | ID: mdl-30718427

Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.


Bacterial Proteins/genetics , Membrane Proteins/genetics , Penicillin-Binding Proteins/genetics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Cell Division/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/ultrastructure , Cytoskeleton/genetics , Cytoskeleton/ultrastructure , Escherichia coli/genetics , GTP Phosphohydrolases/genetics , Humans , Microscopy, Fluorescence , Peptidoglycan/biosynthesis , Peptidoglycan/genetics , Pneumococcal Infections/genetics , Streptococcus pneumoniae/pathogenicity , Streptococcus pneumoniae/ultrastructure
7.
Mol Microbiol ; 103(6): 931-957, 2017 03.
Article En | MEDLINE | ID: mdl-28010038

GpsB regulatory protein and StkP protein kinase have been proposed as molecular switches that balance septal and peripheral (side-wall like) peptidoglycan (PG) synthesis in Streptococcus pneumoniae (pneumococcus); yet, mechanisms of this switching remain unknown. We report that ΔdivIVA mutations are not epistatic to ΔgpsB division-protein mutations in progenitor D39 and related genetic backgrounds; nor is GpsB required for StkP localization or FDAA labeling at septal division rings. However, we confirm that reduction of GpsB amount leads to decreased protein phosphorylation by StkP and report that the essentiality of ΔgpsB mutations is suppressed by inactivation of PhpP protein phosphatase, which concomitantly restores protein phosphorylation levels. ΔgpsB mutations are also suppressed by other classes of mutations, including one that eliminates protein phosphorylation and may alter division. Moreover, ΔgpsB mutations are synthetically lethal with Δpbp1a, but not Δpbp2a or Δpbp1b mutations, suggesting GpsB activation of PBP2a activity. Consistent with this result, co-IP experiments showed that GpsB complexes with EzrA, StkP, PBP2a, PBP2b and MreC in pneumococcal cells. Furthermore, depletion of GpsB prevents PBP2x migration to septal centers. These results support a model in which GpsB negatively regulates peripheral PG synthesis by PBP2b and positively regulates septal ring closure through its interactions with StkP-PBP2x.


Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Cell Division/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Penicillin-Binding Proteins/genetics , Peptidoglycan/biosynthesis , Streptococcus pneumoniae/genetics , Virulence Factors/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Base Composition/genetics , Cell Division/physiology , Cell Wall/metabolism , Mutation/genetics , Penicillin-Binding Proteins/metabolism , Phosphorylation , Streptococcus pneumoniae/metabolism , Virulence Factors/metabolism
8.
J Bacteriol ; 199(3)2017 Feb 01.
Article En | MEDLINE | ID: mdl-27872183

Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli, such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis but not peripheral PG synthesis; hence, inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here, we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in the delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells with multiple FtsZ rings, with deletion of sepF mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z-ring assembly. The overproduction of FtsA stimulates septation and suppresses the cell division defects caused by the deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is a clinically important human pathogen for which more therapies against unexploited essential targets, like cell growth and division proteins, are needed. Pneumococcus is an ovoid-shaped Gram-positive bacterium with cell growth and division properties that have important distinctions from those of rod-shaped bacteria. Gaining insights into these processes can thus provide valuable information to develop novel antimicrobials. Whereas rods use distinctly localized protein machines at different cellular locations to synthesize peripheral and septal peptidoglycans, we present evidence that S. pneumoniae organizes these two machines at a single location in the middle of dividing cells. Here, we focus on the properties of the actin-like protein FtsA as an essential orchestrator of peripheral and septal growth in this bacterium.

9.
Antimicrob Agents Chemother ; 59(6): 3548-55, 2015.
Article En | MEDLINE | ID: mdl-25845878

Selective fluorescent ß-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available ß-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with ß-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x.


Penicillin-Binding Proteins/metabolism , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , beta-Lactams/pharmacology , Amdinocillin/pharmacology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cephalosporins/pharmacology , Doripenem , Electrophoresis, Polyacrylamide Gel , Meropenem , Thienamycins/pharmacology
10.
Mol Microbiol ; 97(2): 229-43, 2015 Jul.
Article En | MEDLINE | ID: mdl-25869931

The Phr peptides of the Bacillus species mediate quorum sensing, but their identification and function in other species of bacteria have not been determined. We have identified a Phr peptide quorum-sensing system (TprA/PhrA) that controls the expression of a lantibiotic gene cluster in the Gram-positive human pathogen, Streptococcus pneumoniae. Lantibiotics are highly modified peptides that are part of the bacteriocin family of antimicrobial peptides. We have characterized the basic mechanism for a Phr-peptide signaling system in S. pneumoniae and found that it induces the expression of the lantibiotic genes when pneumococcal cells are at high density in the presence of galactose, a main sugar of the human nasopharynx, a highly competitive microbial environment. Activity of the Phr peptide system is not seen when pneumococcal cells are grown with glucose, the preferred carbon source and the most prevalent sugar encountered by S. pneumoniae during invasive disease. Thus, the lantibiotic genes are expressed under the control of both cell density signals via the Phr peptide system and nutritional signals from the carbon source present, suggesting that quorum sensing and the lantibiotic machinery may help pneumococcal cells compete for space and resources during colonization of the nasopharynx.


Bacteriocins/biosynthesis , Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Multigene Family , Quorum Sensing/physiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Quorum Sensing/genetics
11.
Mol Microbiol ; 94(1): 21-40, 2014 Oct.
Article En | MEDLINE | ID: mdl-25099088

The relative localization patterns of class B penicillin-binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side-wall-like) peptidoglycan (PG) synthesis, respectively, in the mid-cell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse-experiments with fluorescent D-amino acids (FDAAs) were performed in wild-type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centres of constricting septa in mid-to-late divisional cells resolved by high-resolution 3D-SIM microscopy. Dual-protein and protein-fluorescent vancomycin 2D and 3D-SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centres of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodelling.


Cell Division , Penicillin-Binding Proteins/metabolism , Peptidoglycan/biosynthesis , Streptococcus pneumoniae/cytology , Penicillin-Binding Proteins/genetics , Protein Transport , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
12.
Mol Microbiol ; 90(5): 939-55, 2013 Dec.
Article En | MEDLINE | ID: mdl-24118410

Bacterial cell shapes are manifestations of programs carried out by multi-protein machines that synthesize and remodel the resilient peptidoglycan (PG) mesh and other polymers surrounding cells. GpsB protein is conserved in low-GC Gram-positive bacteria and is not essential in rod-shaped Bacillus subtilis, where it plays a role in shuttling penicillin-binding proteins (PBPs) between septal and side-wall sites of PG synthesis. In contrast, we report here that GpsB is essential in ellipsoid-shaped, ovococcal Streptococcus pneumoniae (pneumococcus), and depletion of GpsB leads to formation of elongated, enlarged cells containing unsegregated nucleoids and multiple, unconstricted rings of fluorescent-vancomycin staining, and eventual lysis. These phenotypes are similar to those caused by selective inhibition of Pbp2x by methicillin that prevents septal PG synthesis. Dual-protein 2D and 3D-SIM (structured illumination) immunofluorescence microscopy (IFM) showed that GpsB and FtsZ have overlapping, but not identical, patterns of localization during cell division and that multiple, unconstricted rings of division proteins FtsZ, Pbp2x, Pbp1a and MreC are in elongated cells depleted of GpsB. These patterns suggest that GpsB, like Pbp2x, mediates septal ring closure. This first dual-protein 3D-SIM IFM analysis also revealed separate positioning of Pbp2x and Pbp1a in constricting septa, consistent with two separable PG synthesis machines.


Bacterial Proteins/physiology , Peptidoglycan/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/metabolism , Virulence Factors/physiology , Bacterial Proteins/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Gene Deletion , Imaging, Three-Dimensional , Methicillin/pharmacology , Microscopy, Fluorescence , Penicillin-Binding Proteins/physiology , Peptidyl Transferases/physiology , Phenotype , Protein Transport , Streptococcus pneumoniae/genetics , Virulence Factors/metabolism
13.
Mol Microbiol ; 86(3): 645-60, 2012 Nov.
Article En | MEDLINE | ID: mdl-23013245

WalRK (YycFG) two-component systems (TCSs) of low-GC Gram-positive bacteria play critical roles in regulating peptidogylcan hydrolase genes involved in cell division and wall stress responses. The WalRK (VicRK) TCSs of Streptococcus pneumoniae (pneumococcus) and other Streptococcus species show numerous differences with those of other low-GC species. Notably, the pneumococcal WalK sensor kinase is not essential for normal growth in culture, unlike its homologues in Bacillus and Staphylococcus species. The WalK sensor kinase possesses histidine autokinase activity and mediates dephosphorylation of phosphorylated WalR∼P response regulator. To understand the contributions of these two WalK activities to pneumococcal growth, we constructed and characterized a set of walK kinase and phosphatase mutants in biochemical reactions and in cells. We identified an amino acid substitution in WalK that significantly reduces phosphatase activity, but not other activities. Comparisons were made between WalRK regulon expression levels and WalR∼P amounts in cells determined by Phos-tag SDS-PAGE. Reduction of WalK phosphatase activity resulted in nearly 90% phosphorylation to WalR∼P, consistent with the conclusion that WalK phosphatase is strongly active in exponentially growing cells. WalK phosphatase activity was also shown to depend on the WalK PAS domain and to limit cross-talk and the recovery of WalR∼P from walK(+) cells.


Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Phosphoric Monoester Hydrolases/metabolism , Streptococcus pneumoniae/enzymology , Bacterial Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Regulon , Signal Transduction , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/metabolism
14.
Curr Opin Microbiol ; 15(2): 194-203, 2012 Apr.
Article En | MEDLINE | ID: mdl-22280885

Streptococcus pneumoniae is a serious human respiratory pathogen that has the capacity to evade capsule-based vaccines and to develop multidrug antibiotic resistance. This review summarizes recent advances in understanding the mechanisms and regulation of peptidoglycan (PG) biosynthesis that result in ellipsoid-shaped, ovococcus Streptococcus cells. New results support a two-state model for septal and peripheral PG synthesis at mid-cell, involvement of essential cell division proteins in PG remodeling, and mid-cell localization of proteins that organize PG biosynthesis and that form the protein translocation apparatus. PG biosynthesis proteins have already turned up as promising vaccine candidates and targets of antibiotics. Properties of several recently characterized proteins that mediate or regulate PG biosynthesis suggest a source of additional targets for therapies against pneumococcus.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/drug effects , Bacterial Proteins/metabolism , Peptidoglycan/biosynthesis , Pneumococcal Vaccines/pharmacology , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Pneumococcal Infections/prevention & control , Streptococcus pneumoniae/genetics
15.
J Bacteriol ; 192(17): 4388-94, 2010 Sep.
Article En | MEDLINE | ID: mdl-20622066

The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR(Spn)) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRK(Spn) operon. To better understand the functions of the WalRKJ(Spn) proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK(Bsu)), which is localized at division septa, immunofluorescence microscopy showed that WalK(Spn) is distributed throughout the cell periphery. WalJ(Spn) is also localized to the cell surface periphery, whereas WalR(Spn) was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR(Spn) was recovered from the cytoplasmic fraction, while WalK(Spn) and the majority of WalJ(Spn) were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ(Spn) by quantitative Western blotting. The WalR(Spn) response regulator is relatively abundant and present at levels of approximately 6,200 monomers per cell, which are approximately 14-fold greater than the amount of the WalK(Spn) histidine kinase, which is present at approximately 460 dimers (920 monomers) per cell. We detected approximately 1,200 monomers per cell of WalJ(Spn) ancillary protein, similar to the amount of WalK(Spn).


Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism , Cytoplasm/metabolism , Histidine Kinase , Humans , Operon , Protein Kinases/genetics , Serotyping , Signal Transduction , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics
16.
J Bacteriol ; 191(9): 3024-40, 2009 May.
Article En | MEDLINE | ID: mdl-19270090

PcsB is a protein of unknown function that plays a critical role in cell division in Streptococcus pneumoniae and other ovococcus species of Streptococcus. We constructed isogenic sets of mutants expressing different amounts of PcsB in laboratory strain R6 and virulent serotype 2 strain D39 to evaluate its cellular roles. Insertion mutagenesis in parent and pcsB(+) merodiploid strains indicated that pcsB is essential in serotype 2 S. pneumoniae. Quantitative Western blotting of wild-type and epitope-tagged PcsB showed that all PcsB was processed into cell-associated and secreted forms of the same molecular mass and that cell-associated PcsB was moderately abundant and present at approximately 4,900 monomers per cell. Controlled expression and complementation experiments indicated that there was a causative relationship between the severity of defects in cell division and decreasing PcsB amount. These experiments also showed that perturbations of expression of the upstream mreCD genes did not contribute to the cell division defects of pcsB mutants and that mreCD could be deleted. Unexpectedly, capsule influenced the cell shape and chain formation phenotypes of the wild-type D39 strain and mutants underexpressing PcsB or deleted for other genes involved in peptidoglycan biosynthesis, such as dacA. Underexpression of PcsB did not result in changes in the amounts or composition of lactoyl-peptides, which were markedly different in the R6 and D39 strains, and there was no correlation between decreased PcsB amount and sensitivity to penicillin. Finally, microarray analyses indicated that underexpression of PcsB may generate a signal that increases expression of the VicRK regulon, which includes pcsB.


Bacterial Capsules/metabolism , Cell Cycle Proteins/physiology , Cell Division , Genes, Essential , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/physiology , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , Gene Deletion , Gene Expression Profiling , Gene Order , Genes, Bacterial , Genetic Complementation Test , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis
17.
Microbiology (Reading) ; 149(Pt 5): 1323-1331, 2003 May.
Article En | MEDLINE | ID: mdl-12724393

Deficiencies in the MutS protein disrupt methyl-directed mismatch repair (MMR), generating a mutator phenotype typified by high mutation rates and promiscuous recombination. How such deficiencies might arise in the natural environment was determined by analysing pathogenic strains of Escherichia coli. Quantitative Western immunoblotting showed that the amount of MutS in a wild-type strain of the enterohaemorrhagic pathogen E. coli O157 : H7 decreased about 26-fold in stationary-phase cells as compared with the amount present during exponential-phase growth. The depletion of MutS in O157 : H7 is significantly greater than that observed for a laboratory-attenuated E. coli K-12 strain. In the case of stable mutators, mutS defects in strains identified among natural isolates were analysed, including two E. coli O157 : H7 strains, a diarrhoeagenic E. coli O55 : H7 strain, and a uropathogenic strain from the E. coli reference (ECOR) collection. No MutS could be detected in the four strains by Western immunoblot analyses. RNase T2 protection assays showed that the strains were either deficient in mutS transcripts or produced transcripts truncated at the 3' end. Nucleotide sequence analysis revealed extensive deletions in the mutS region of three strains, ranging from 7.5 to 17.3 kb relative to E. coli K-12 sequence, while the ECOR mutator contained a premature stop codon in addition to other nucleotide changes in the mutS coding sequence. These results provide insights into the status of the mutS gene and its product in pathogenic strains of E. coli.


Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins , DNA-Binding Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Mutation , Base Pair Mismatch , DNA Repair , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity , Gene Deletion , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , MutS DNA Mismatch-Binding Protein , Polymerase Chain Reaction , Sequence Analysis, DNA
...