Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Immunohorizons ; 5(10): 870-883, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702763

ABSTRACT

Citrobacter rodentium is a murine pathogenic bacterium that adheres to intestinal epithelial cells, resulting in loss of microvilli and pedestal formation, and alters multiple cellular processes, including actin dynamics. Translocated intimin receptor (Tir), one of its virulence factors, functions as receptor for intimin, a bacterial adhesin, thereby mediating bacterial adhesion to epithelial cells. Although robust immune responses are induced to eliminate pathogenic bacteria in the host, they are suppressed against harmless commensal bacteria. The mechanism(s) underlying such a differentiation remains unclear. This study sought to determine the roles of intimate adhesion in the induction of specific immune responses upon C. rodentium infection. To this end, microbiota-depleted mice were infected with the Tir-F strain expressing full-length Tir or mutant strains expressing the C-terminal truncated Tir that is defective in intimin binding and host cell actin polymerization. There were no differences in the colonization kinetics and Abs responses against C. rodentium LPS among the strains, whereas Abs against the virulence factors were only produced on Tir-F infection. Although there were no differences in the virulence factors mRNA expression levels, colonic hyperplasia, and bacterial translocation to the systemic organs irrespective of the strain, adhesion to colonic epithelial cells was reduced in the mutant strain-infected mice. Furthermore, transcriptomic analysis indicated that robust inflammatory and immune responses were only induced in the Tir-F-infected group and were suppressed in the mutant-infected groups. Taken together, these findings suggest that Tir-mediated intimate adhesion induces inflammatory and immune responses, resulting in the induction of virulence factor-specific Abs.


Subject(s)
Bacterial Adhesion/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Intestinal Mucosa/pathology , Virulence Factors/metabolism , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion/genetics , Cell Line, Tumor , Citrobacter rodentium/genetics , Citrobacter rodentium/pathogenicity , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Female , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mutation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL