Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; : e0062224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953377

ABSTRACT

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.

2.
Sci Rep ; 13(1): 14787, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684280

ABSTRACT

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.


Subject(s)
Antelopes , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Sheep , Seroconversion , Peste-des-Petits-Ruminants/diagnosis , Antibodies , Animals, Wild , Buffaloes , Camelus , Goats
3.
Pathogens ; 12(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513703

ABSTRACT

African swine fever (ASF) is an economically important disease due to high morbidity and mortality rates and the ability to affect all ages and breeds of pigs. Biosecurity measures to prevent the spread of the causative agent, African swine fever virus (ASFV), include prescriptive cleaning and disinfection procedures. The aim of this study was to establish the biocidal effects of twenty-four commercially available disinfectants including oxidizing agents, acids, aldehydes, formic acids, phenol, and mixed-class chemistries against ASFV. The products were prepared according to the manufacturer's instructions and a suspension assay was performed with ASFV strain, BA71V using Vero cells (African green monkey cells) to test efficacy in reducing ASFV infection of cells. Generally, disinfectants containing formic acid and phenolic compounds, as well as oxidizing agents reduced viral titers of ASFV by over 4 log10 at temperatures ranging from 4 °C to 20 °C. Hydrogen peroxide, aldehyde, and quaternary ammonium compounds containing disinfectants were cytotoxic, limiting the detection of viral infectivity reductions to less than 4 log10. These preliminary results can be used to target research on disinfectants which contain active ingredients with known efficacy against ASFV under conditions recommended for the country where their use will be applied.

4.
Nat Commun ; 12(1): 542, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483491

ABSTRACT

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Protein Multimerization , Swine
5.
PLoS Biol ; 18(12): e3001016, 2020 12.
Article in English | MEDLINE | ID: mdl-33347434

ABSTRACT

SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Virus Attachment , Amino Acid Substitution , Animals , Binding Sites , Cats , Cattle , Dogs , Guinea Pigs , HEK293 Cells , Host-Pathogen Interactions , Humans , Rabbits , Rats , Viral Zoonoses/virology
6.
Transbound Emerg Dis ; 66(3): 1177-1185, 2019 May.
Article in English | MEDLINE | ID: mdl-30661301

ABSTRACT

The outbreak of bluetongue virus (BTV) serotype 8 (BTV-8) during 2006-2009 in Europe was the most costly epidemic of the virus in recorded history. In 2015, a BTV-8 strain re-emerged in France which has continued to circulate since then. To examine anecdotal reports of reduced pathogenicity and transmission efficiency, we investigated the infection kinetics of a 2007 UK BTV-8 strain alongside the re-emerging BTV-8 strain isolated from France in 2017. Two groups of eight BTV-naïve British mule sheep were inoculated with 5.75 log10 TCID50 /ml of either BTV-8 strain. BTV RNA was detected by 2 dpi in both groups with peak viraemia occurring between 5-9 dpi. A significantly greater amount of BTV RNA was detected in sheep infected with the 2007 strain (6.0-8.8 log10 genome copies/ml) than the re-emerging BTV-8 strain (2.9-7.9 log10 genome copies/ml). All infected sheep developed BTV-specific antibodies by 9 dpi. BTV was isolated from 2 dpi to 12 dpi for 2007 BTV-8-inoculated sheep and from 5 to 10 dpi for sheep inoculated with the remerging BTV-8. In Culicoides sonorensis feeding on the sheep over the period 7-12 dpi, vector competence was significantly higher for the 2007 strain than the re-emerging strain. Both the proportion of animals showing moderate (as opposed to mild or no) clinical disease (6/8 vs. 1/8) and the overall clinical scores (median 5.25 vs. 3) were significantly higher in sheep infected with the 2007 strain, compared to those infected with the re-emerging strain. However, one sheep infected with the re-emerging strain was euthanized at 16 dpi having developed severe lameness. This highlights the potential of the re-emerging BTV-8 to still cause illness in naïve ruminants with concurrent costs to the livestock industry.


Subject(s)
Antibodies, Viral/blood , Bluetongue virus/immunology , Bluetongue/epidemiology , Ceratopogonidae/virology , Communicable Diseases, Emerging/veterinary , Disease Outbreaks/veterinary , Insect Vectors/virology , Animals , Bluetongue/transmission , Bluetongue/virology , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Bluetongue virus/pathogenicity , Female , France/epidemiology , Serogroup , Sheep , Viremia/veterinary , Virulence
7.
Photochem Photobiol ; 89(4): 984-94, 2013.
Article in English | MEDLINE | ID: mdl-23550943

ABSTRACT

During August 2011 stratospheric ozone over much of Southern Australia dropped to very low levels (approximately 265 Dobson Units) for over a week above major population centers. The weather during this low ozone period was mostly clear and sunny, resulting in measured solar ultraviolet radiation (UVR) levels up to 40% higher than normal, with UV Index > 3 despite being winter. Satellite ozone measurements and meteorological assimilated data indicate that the event was likely due in large part to the anomalous southward movement over Australia of ozone-poor air in the lower stratosphere originating from tropical latitudes. At the time, a study measuring the UVR exposures of outdoor workers in Victoria was underway and a number of the workers recorded substantial UVR exposures and were sunburnt. Given the cities and populations involved (approximately 10 million people), it is likely that many people could have been exposed to anomalously high levels of solar UVR for that time of year, with resultant higher UVR exposures and sunburns to unacclimatized skin (often a problem transitioning from low winter to higher spring UVR levels). Reporting procedures have been modified to utilize ozone forecasts to warn the public of anomalously high UVR levels in the future.


Subject(s)
Ozone , Sunlight , Ultraviolet Rays , Atmosphere , Australia , Environmental Monitoring , Seasons , Sunburn/etiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...