Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Am J Transplant ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38219866

ABSTRACT

Mouse models have been instrumental in understanding mechanisms of transplant rejection and tolerance, but cross-study reproducibility and translation of experimental findings into effective clinical therapies are issues of concern. The Mouse Models in Transplantation symposium gathered scientists and physician-scientists involved in basic and clinical research in transplantation to discuss the strengths and limitations of mouse transplant models and strategies to enhance their utility. Participants recognized that increased procedure standardization, including the use of prespecified, defined endpoints, and statistical power analyses, would benefit the field. They also discussed the generation of new models that incorporate environmental and genetic variables affecting clinical outcomes as potentially important. If implemented, these strategies are expected to improve the reproducibility of mouse studies and increase their translation to clinical trials and, ideally, new Food and Drug Administration-approved drugs.

2.
Nat Commun ; 14(1): 5411, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669929

ABSTRACT

Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.


Subject(s)
Interleukin-33 , Radiation Injuries , Humans , Epidermal Growth Factor , Imaging, Three-Dimensional , Immunomodulation
4.
Sci Adv ; 9(20): eadf9016, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37205761

ABSTRACT

Cytokine storm describes a life-threatening, systemic inflammatory syndrome characterized by elevated levels of proinflammatory cytokines and immune cell hyperactivation associated with multi-organ dysfunction. Matrix-bound nanovesicles (MBV) are a subclass of extracellular vesicle shown to down-regulate proinflammatory immune responses. The objective of this study was to assess the efficacy of MBV in mediating influenza-induced acute respiratory distress syndrome and cytokine storm in a murine model. Intravenous administration of MBV decreased influenza-mediated total lung inflammatory cell density, proinflammatory macrophage frequencies, and proinflammatory cytokines at 7 and 21 days following viral inoculation. MBV decreased long-lasting alveolitis and the proportion of lung undergoing inflammatory tissue repair at day 21. MBV increased the proportion of activated anti-viral CD4+ and CD8+ T cells at day 7 and memory-like CD62L+ CD44+, CD4+, and CD8+ T cells at day 21. These results show immunomodulatory properties of MBV that may benefit the treatment of viral-mediated pulmonary inflammation with applicability to other viral diseases such as SARS-CoV-2.


Subject(s)
COVID-19 , Influenza, Human , Mice , Animals , Humans , Influenza, Human/drug therapy , SARS-CoV-2 , Cytokine Release Syndrome , CD8-Positive T-Lymphocytes , Inflammation/drug therapy , Cytokines , Immunity
5.
Transplantation ; 107(5): 1069-1078, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36706085

ABSTRACT

When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.


Subject(s)
Interleukin-33 , Pulmonary Fibrosis , Humans , Interleukin-33/metabolism , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lymphocytes , Fibrosis
6.
Organogenesis ; 19(1): 2164159, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-36681905

ABSTRACT

Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.


Subject(s)
Organ Transplantation , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/transplantation , Immunotherapy, Adoptive/methods , Immunosuppressive Agents/therapeutic use , Cell- and Tissue-Based Therapy , Graft Rejection/prevention & control
7.
Trends Immunol ; 43(11): 901-916, 2022 11.
Article in English | MEDLINE | ID: mdl-36253275

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) contribute to the maintenance of mammalian barrier tissue homeostasis. We review how ILC2s integrate epithelial signals and neurogenic components to preserve the tissue microenvironment and modulate inflammation. The epithelium that overlies barrier tissues, including the skin, lungs, and gut, generates epithelial cytokines that elicit ILC2 activation. Sympathetic, parasympathetic, sensory, and enteric fibers release neural signals to modulate ILC2 functions. We also highlight recent findings suggesting neuro-epithelial-ILC2 crosstalk and its implications in immunity, inflammation and resolution, tissue repair, and restoring homeostasis. We further discuss the pathogenic effects of disturbed ILC2-centered neuro-epithelial-immune cell interactions and putative areas for therapeutic targeting.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Animals , Cytokines , Lung , Inflammation , Mammals
8.
Tissue Eng Part A ; 28(19-20): 867-878, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35770892

ABSTRACT

The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.


Subject(s)
Biological Products , Interleukin-33 , Interleukin-33/genetics , Interleukin-33/metabolism , Transcriptome/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Macrophages/metabolism , Biocompatible Materials , Phenotype , Anti-Inflammatory Agents , Biological Products/metabolism
9.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35503257

ABSTRACT

Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell-derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12-independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Bone Marrow Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Interleukin-12 , Interleukin-33/genetics , Mice , Mice, Inbred BALB C , Th1 Cells/pathology
10.
Annu Rev Immunol ; 40: 15-43, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34985928

ABSTRACT

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair.


Subject(s)
Hypersensitivity , Interleukin-33 , Animals , Cytokines , Homeostasis , Humans , Immunity, Innate , Lymphocytes
12.
Adv Drug Deliv Rev ; 173: 181-215, 2021 06.
Article in English | MEDLINE | ID: mdl-33775706

ABSTRACT

Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.


Subject(s)
Biological Products/therapeutic use , Drug Delivery Systems , Myocardial Infarction/drug therapy , Animals , Humans
13.
Front Immunol ; 12: 611910, 2021.
Article in English | MEDLINE | ID: mdl-33708206

ABSTRACT

Detrimental inflammatory responses after solid organ transplantation are initiated when immune cells sense pathogen-associated molecular patterns (PAMPs) and certain damage-associated molecular patterns (DAMPs) released or exposed during transplant-associated processes, such as ischemia/reperfusion injury (IRI), surgical trauma, and recipient conditioning. These inflammatory responses initiate and propagate anti-alloantigen (AlloAg) responses and targeting DAMPs and PAMPs, or the signaling cascades they activate, reduce alloimmunity, and contribute to improved outcomes after allogeneic solid organ transplantation in experimental studies. However, DAMPs have also been implicated in initiating essential anti-inflammatory and reparative functions of specific immune cells, particularly Treg and macrophages. Interestingly, DAMP signaling is also involved in local and systemic homeostasis. Herein, we describe the emerging literature defining how poor outcomes after transplantation may result, not from just an over-abundance of DAMP-driven inflammation, but instead an inadequate presence of a subset of DAMPs or related molecules needed to repair tissue successfully or re-establish tissue homeostasis. Adverse outcomes may also arise when these homeostatic or reparative signals become dysregulated or hijacked by alloreactive immune cells in transplant niches. A complete understanding of the critical pathways controlling tissue repair and homeostasis, and how alloimmune responses or transplant-related processes disrupt these will lead to new immunotherapeutics that can prevent or reverse the tissue pathology leading to lost grafts due to chronic rejection.


Subject(s)
Alarmins/metabolism , Inflammation/etiology , Inflammation/metabolism , Organ Transplantation , Signal Transduction , Alarmins/genetics , Biomarkers , Fibrosis , Gene Expression Regulation , Humans , Immunity , Immunomodulation , Inflammation/pathology , Inflammation Mediators , Macrophages/immunology , Macrophages/metabolism , Organ Transplantation/adverse effects , Organ Transplantation/methods , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous , Treatment Outcome
14.
Shock ; 56(3): 461-472, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33394970

ABSTRACT

ABSTRACT: IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. Macrophages (Raw 264.7 and alveolar macrophages from wild-type or ST2-/- mice) were used to identify specific signaling components.CLP + MTV resulted in ALI that was partially sensitive to genetic ablation of IL-33 or ST2 or antibody neutralization of WISP1. Genetic ablation of IL-33 or ST2 significantly prevented ALI after CLP + MTV and reduced levels of WISP1 in the circulation and bronchoalveolar lung fluid. rIL-33 increased WISP1 in alveolar macrophages in an ST2, PI3K/AKT, and ERK dependent manner. This WISP1 upregulation and WNT ß-catenin activation were sensitive to inhibition of the ß-catenin/TCF/CBP/P300 nuclear pathway.We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.


Subject(s)
CCN Intercellular Signaling Proteins/physiology , Interleukin-33/physiology , Proto-Oncogene Proteins/physiology , Respiration, Artificial/adverse effects , Sepsis/complications , Tidal Volume/physiology , Ventilator-Induced Lung Injury/etiology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Sepsis/therapy , Signal Transduction/physiology , Ventilator-Induced Lung Injury/metabolism
15.
JCI Insight ; 5(22)2020 11 19.
Article in English | MEDLINE | ID: mdl-33208555

ABSTRACT

The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.


Subject(s)
Bone Marrow Cells/physiology , Hematopoiesis , Hematopoietic Stem Cells/physiology , Interleukin-10/metabolism , Mesenchymal Stem Cells/physiology , Stromal Cells/physiology , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cell Communication , Cell Proliferation , Cells, Cultured , Coculture Techniques , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred C57BL , Stromal Cells/cytology , Stromal Cells/immunology
16.
Cancer Immunol Res ; 8(11): 1381-1392, 2020 11.
Article in English | MEDLINE | ID: mdl-32917659

ABSTRACT

Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment by prolonging overall survival of patients with cancer. Despite advances in the clinical setting, the immune cellular network in the tumor microenvironment (TME) that mediates such therapy is not well understood. IL33 is highly expressed in normal epithelial cells but downregulated in tumor cells in advanced carcinoma. Here, we showed that IL33 was induced in tumor cells after treatment with ICB such as CTL antigen-4 (CTLA-4) and programmed death-1 (PD-1) mAbs. ST2 signaling in nontumor cells, particularly CD8+ T cells, was critical for the antitumor efficacy of ICB immunotherapy. We demonstrated that tumor-derived IL33 was crucial for the antitumor efficacy of checkpoint inhibitors. Mechanistically, IL33 increased the accumulation and effector function of tumor-resident CD103+CD8+ T cells, and CD103 expression on CD8+ T cells was required for the antitumor efficacy of IL33. In addition, IL33 also increased the numbers of CD103+ dendritic cells (DC) in the TME and CD103+ DC were required for the antitumor effect of IL33 and accumulation of tumor-infiltrating CD8+ T cells. Combination of IL33 with CTLA-4 and PD-1 ICB further prolonged survival of tumor-bearing mice. Our study established that the "danger signal" IL33 was crucial for mediating ICB cancer therapy by promoting tumor-resident adaptive immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Interleukin-33/metabolism , Animals , Disease Models, Animal , Humans , Mice
17.
J Clin Invest ; 130(10): 5397-5412, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32644975

ABSTRACT

Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.


Subject(s)
Graft Rejection/immunology , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Interleukin-33/immunology , Macrophages/immunology , Alarmins/immunology , Allografts , Animals , Child , Disease Models, Animal , Graft Rejection/etiology , Graft Survival/immunology , Humans , Interleukin-33/administration & dosage , Interleukin-33/deficiency , Interleukin-33/genetics , Macrophage Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Myocardium/immunology , Myocardium/pathology , Up-Regulation
18.
Science ; 368(6495): 1122-1127, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32381589

ABSTRACT

Immunological memory specific to previously encountered antigens is a cardinal feature of adaptive lymphoid cells. However, it is unknown whether innate myeloid cells retain memory of prior antigenic stimulation and respond to it more vigorously on subsequent encounters. In this work, we show that murine monocytes and macrophages acquire memory specific to major histocompatibility complex I (MHC-I) antigens, and we identify A-type paired immunoglobulin-like receptors (PIR-As) as the MHC-I receptors necessary for the memory response. We demonstrate that deleting PIR-A in the recipient or blocking PIR-A binding to donor MHC-I molecules blocks memory and attenuates kidney and heart allograft rejection. Thus, innate myeloid cells acquire alloantigen-specific memory that can be targeted to improve transplant outcomes.


Subject(s)
Graft Rejection/immunology , Histocompatibility Antigens Class I/immunology , Immunity, Innate , Immunologic Memory , Macrophages/immunology , Monocytes/immunology , Receptors, Immunologic/physiology , Animals , Gene Deletion , Graft Rejection/genetics , Heart Transplantation , Kidney Transplantation , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Receptors, Immunologic/genetics
19.
Sci Adv ; 6(11): eaax8429, 2020 03.
Article in English | MEDLINE | ID: mdl-32201714

ABSTRACT

Vascularized composite allotransplantation (VCA) encompasses face and limb transplantation, but as with organ transplantation, it requires lifelong regimens of immunosuppressive drugs to prevent rejection. To achieve donor-specific immune tolerance and reduce the need for systemic immunosuppression, we developed a synthetic drug delivery system that mimics a strategy our bodies naturally use to recruit regulatory T cells (Treg) to suppress inflammation. Specifically, a microparticle-based system engineered to release the Treg-recruiting chemokine CCL22 was used in a rodent hindlimb VCA model. These "Recruitment-MP" prolonged hindlimb allograft survival indefinitely (>200 days) and promoted donor-specific tolerance. Recruitment-MP treatment enriched Treg populations in allograft skin and draining lymph nodes and enhanced Treg function without affecting the proliferative capacity of conventional T cells. With implications for clinical translation, synthetic human CCL22 induced preferential migration of human Treg in vitro. Collectively, these results suggest that Recruitment-MP promote donor-specific immune tolerance via local enrichment of suppressive Treg.


Subject(s)
Chemotaxis, Leukocyte/immunology , Immune Tolerance , T-Lymphocytes, Regulatory/immunology , Vascularized Composite Allotransplantation , Allografts , Animals , Cytokines/genetics , Cytokines/metabolism , Epitopes , Gene Expression , Graft Rejection/immunology , Graft Survival/immunology , Humans , Immunomodulation , Inflammation Mediators/metabolism , Rats , Skin Transplantation , T-Lymphocytes, Regulatory/metabolism , Tissue Donors , Transplantation Immunology
20.
Proc Natl Acad Sci U S A ; 116(51): 25784-25789, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31792185

ABSTRACT

For individuals who sustain devastating composite tissue loss, vascularized composite allotransplantation (VCA; e.g., hand and face transplantation) has the potential to restore appearance and function of the damaged tissues. As with solid organ transplantation, however, rejection must be controlled by multidrug systemic immunosuppression with substantial side effects. As an alternative therapeutic approach inspired by natural mechanisms the body uses to control inflammation, we developed a system to enrich regulatory T cells (Tregs) in an allograft. Microparticles were engineered to sustainably release TGF-ß1, IL-2, and rapamycin, to induce Treg differentiation from naïve T cells. In a rat hindlimb VCA model, local administration of this Treg-inducing system, referred to as TRI-MP, prolonged allograft survival indefinitely without long-term systemic immunosuppression. TRI-MP treatment reduced expression of inflammatory mediators and enhanced expression of Treg-associated cytokines in allograft tissue. TRI-MP also enriched Treg and reduced inflammatory Th1 populations in allograft draining lymph nodes. This local immunotherapy imparted systemic donor-specific tolerance in otherwise immunocompetent rats, as evidenced by acceptance of secondary skin grafts from the hindlimb donor strain and rejection of skin grafts from a third-party donor strain. Ultimately, this therapeutic approach may reduce, or even eliminate, the need for systemic immunosuppression in VCA or solid organ transplantation.


Subject(s)
Cell-Derived Microparticles/metabolism , Immunosuppression Therapy/methods , T-Lymphocytes, Regulatory/cytology , Transplantation Tolerance/physiology , Vascularized Composite Allotransplantation/methods , Animals , Cytokines/metabolism , Drug Delivery Systems , Immunosuppressive Agents/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...