Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Mar Pollut Bull ; 203: 116477, 2024 Jun.
Article En | MEDLINE | ID: mdl-38759466

The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.


Introduced Species , Microbiota , Seawater , Trace Elements , Urochordata , Animals , Trace Elements/analysis , Urochordata/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Symbiosis , Seasons , Gills/microbiology
3.
BMC Genomics ; 25(1): 410, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664648

BACKGROUND: Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS: Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS: Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.


Base Composition , Genomics , Genomics/methods , Animals , Introns/genetics , Genome , Exons/genetics , Genetic Loci , Genome Size , Plants/genetics , DNA, Intergenic/genetics
4.
iScience ; 27(1): 108588, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38111684

Metabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases. Logistic constraints in ports prompt the development of simple, easy-to-deploy samplers. We tested a new device called polyamide mesh for ports organismal monitoring (POMPOM) with a high surface-to-volume ratio. POMPOMS were deployed inside a fishing and recreational port in the Mediterranean alongside conventional settlement plates. We also compiled a curated database with cytochrome oxidase (COI) sequences of Mediterranean NIS. COI metabarcoding of the communities settled in the POMPOMs captured a similar biodiversity than settlement plates, with shared molecular operational units (MOTUs) representing ca. 99% of reads. 38 NIS were detected in the port accounting for ca. 26% of reads. POMPOMs were easy to deploy and handle and provide an efficient method for NIS surveillance.

5.
iScience ; 26(10): 107812, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37744040

Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.

6.
J Environ Manage ; 345: 118696, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37549639

Invasive alien species have widespread impacts on native biodiversity and ecosystem services. Since the number of introductions worldwide is continuously rising, it is essential to prevent the entry, establishment and spread of new alien species through a systematic examination of future potential threats. Applying a three-step horizon scanning consensus method, we evaluated non-established alien species that could potentially arrive, establish and cause major ecological impact in Spain within the next 10 years. Overall, we identified 47 species with a very high risk (e.g. Oreochromis niloticus, Popillia japonica, Hemidactylus frenatus, Crassula helmsii or Halophila stipulacea), 61 with high risk, 93 with moderate risk, and 732 species with low risk. Many of the species categorized as very high or high risk to Spanish biodiversity are either already present in Europe and neighbouring countries or have a long invasive history elsewhere. This study provides an updated list of potential invasive alien species useful for prioritizing efforts and resources against their introduction. Compared to previous horizon scanning exercises in Spain, the current study screens potential invaders from a wider range of terrestrial, freshwater, and marine organisms, and can serve as a basis for more comprehensive risk analyses to improve management and increase the efficiency of the early warning and rapid response framework for invasive alien species. We also stress the usefulness of measuring agreement and consistency as two different properties of the reliability of expert scores, in order to more easily elaborate consensus ranked lists of potential invasive alien species.


Ecosystem , Introduced Species , Spain , Reproducibility of Results , Biodiversity
7.
Zookeys ; 1157: 109-125, 2023.
Article En | MEDLINE | ID: mdl-37234953

A colonial ascidian of the genus Distaplia caused a mass mortality of the pen shell Atrinamaura (Sowerby, 1835) during June 2016 in the southwest of the Gulf of California (Mexico), with a significant socio-economic cost. Tentatively identified in previous works as Distapliacf.stylifera, a precise taxonomic determination was still lacking. In the present work, based on a detailed morphological study, it is confirmed that this aggressive species is Distapliastylifera (Kowalevsky, 1874). Originally described from the Red Sea, the species currently has a wide circumtropical distribution (with the exception of the Eastern Pacific to date) and is reported as introduced in parts of its range. The present account thus represents an important range extension of this species. However, when revising the original description and later observations, the reported variability of several characters makes it likely that the binomen is in fact a complex of species, as is common in other ascidians with wide distributions. A complete morphological and genetic study including populations from the entire range of distribution would be necessary to settle the status of D.stylifera. Taxonomic uncertainties hinder a correct interpretation of biogeographical patterns and inference on the origin of the studied population. Nevertheless, the known introduction potential of the species, coupled with an explosive growth in an anthropized environment, and the lack of any previous reports in the Eastern Pacific, strongly suggest that the investigated population represents yet another instance of ascidian introduction. From the point of view of management, its invasive behavior is cause for great concern and warrants mitigation measures.

8.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37082140

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

9.
PeerJ ; 10: e12758, 2022.
Article En | MEDLINE | ID: mdl-35111399

DNA metabarcoding is broadly used in biodiversity studies encompassing a wide range of organisms. Erroneous amplicons, generated during amplification and sequencing procedures, constitute one of the major sources of concern for the interpretation of metabarcoding results. Several denoising programs have been implemented to detect and eliminate these errors. However, almost all denoising software currently available has been designed to process non-coding ribosomal sequences, most notably prokaryotic 16S rDNA. The growing number of metabarcoding studies using coding markers such as COI or RuBisCO demands a re-assessment and calibration of denoising algorithms. Here we present DnoisE, the first denoising program designed to detect erroneous reads and merge them with the correct ones using information from the natural variability (entropy) associated to each codon position in coding barcodes. We have developed an open-source software using a modified version of the UNOISE algorithm. DnoisE implements different merging procedures as options, and can incorporate codon entropy information either retrieved from the data or supplied by the user. In addition, the algorithm of DnoisE is parallelizable, greatly reducing runtimes on computer clusters. Our program also allows different input file formats, so it can be readily incorporated into existing metabarcoding pipelines.


Algorithms , Software , Entropy , DNA, Ribosomal , Codon
10.
BMC Bioinformatics ; 22(1): 177, 2021 Apr 05.
Article En | MEDLINE | ID: mdl-33820526

BACKGROUND: The recent blooming of metabarcoding applications to biodiversity studies comes with some relevant methodological debates. One such issue concerns the treatment of reads by denoising or by clustering methods, which have been wrongly presented as alternatives. It has also been suggested that denoised sequence variants should replace clusters as the basic unit of metabarcoding analyses, missing the fact that sequence clusters are a proxy for species-level entities, the basic unit in biodiversity studies. We argue here that methods developed and tested for ribosomal markers have been uncritically applied to highly variable markers such as cytochrome oxidase I (COI) without conceptual or operational (e.g., parameter setting) adjustment. COI has a naturally high intraspecies variability that should be assessed and reported, as it is a source of highly valuable information. We contend that denoising and clustering are not alternatives. Rather, they are complementary and both should be used together in COI metabarcoding pipelines. RESULTS: Using a COI dataset from benthic marine communities, we compared two denoising procedures (based on the UNOISE3 and the DADA2 algorithms), set suitable parameters for denoising and clustering, and applied these steps in different orders. Our results indicated that the UNOISE3 algorithm preserved a higher intra-cluster variability. We introduce the program DnoisE to implement the UNOISE3 algorithm taking into account the natural variability (measured as entropy) of each codon position in protein-coding genes.  This correction increased the number of sequences retained by 88%. The order of the steps (denoising and clustering) had little influence on the final outcome. CONCLUSIONS: We highlight the need for combining denoising and clustering, with adequate choice of stringency parameters, in COI metabarcoding. We present a program that uses the coding properties of this marker to improve the denoising step. We recommend researchers to report their results in terms of both denoised sequences (a proxy for haplotypes) and clusters formed (a proxy for species), and to avoid collapsing the sequences of the latter into a single representative. This will allow studies at the cluster (ideally equating species-level diversity) and at the intra-cluster level, and will ease additivity and comparability between studies.


DNA Barcoding, Taxonomic , Biodiversity , Cluster Analysis
11.
Mol Ecol ; 30(13): 3175-3188, 2021 07.
Article En | MEDLINE | ID: mdl-32974967

In the marine realm, biomonitoring using environmental DNA (eDNA) of benthic communities requires destructive direct sampling or the setting-up of settlement structures. Comparatively much less effort is required to sample the water column, which can be accessed remotely. In this study we assess the feasibility of obtaining information from the eukaryotic benthic communities by sampling the adjacent water layer. We studied two different rocky-substrate benthic communities with a technique based on quadrat sampling. We also took replicate water samples at four distances (0, 0.5, 1.5, and 20 m) from the benthic habitat. Using broad range primers to amplify a ca. 313 bp fragment of the cytochrome oxidase subunit I gene, we obtained a total of 3,543 molecular operational taxonomic units (MOTUs). The structure obtained in the two environments was markedly different, with Metazoa, Archaeplastida and Stramenopiles being the most diverse groups in benthic samples, and Hacrobia, Metazoa and Alveolata in the water. Only 265 MOTUs (7.5%) were shared between benthos and water samples and, of these, 180 (5.1%) were identified as benthic taxa that left their DNA in the water. Most of them were found immediately adjacent to the benthos, and their number decreased as we moved apart from the benthic habitat. It was concluded that water eDNA, even in the close vicinity of the benthos, was a poor proxy for the analysis of benthic structure, and that direct sampling methods are required for monitoring these complex communities via metabarcoding.


Biological Monitoring , DNA Barcoding, Taxonomic , Biodiversity , Environmental Monitoring , Water
12.
Bioresour Technol ; 316: 123949, 2020 Nov.
Article En | MEDLINE | ID: mdl-32768995

The biotechnological production of platform chemicals from renewable resources is in the scientific spotlight, as researchers seek to develop environmentally friendly and cost-efficient processes to compete with the petroleum-based ones. Lactic acid (LA) is an established platform chemical, registering an important market share, mainly owing to the increasing demand for polylactic acid. This study investigated the feasibility to produce LA from bakery waste hydrolysates and lucerne green juice (LGJ) as inexpensive substrates, using a Bacillus coagulans strain. A final LA concentration of 62.2 g/L, with a productivity of 2.59 g/(L.h) and a conversion yield of 0.57 g LA/ g bakery waste was achieved in batch fermentation mode. LA productivity reached 11.28 g/(L.h), using a continuous fermentation system coupled with cell retention membranes at a dilution rate of 0.2 h-1. The results indicate that bakery waste hydrolysates and LGJ can be utilized for the production of highly optical pure L(+)-LA.


Bacillus coagulans , Lactic Acid , Fermentation , Food , Medicago sativa
13.
Mol Ecol ; 29(17): 3299-3315, 2020 09.
Article En | MEDLINE | ID: mdl-32725919

Information about the genomic processes underlying responses to temperature changes is still limited in non-model marine invertebrates. In this sense, transcriptomic analyses can help to identify genes potentially related to thermal responses. We here investigated, via RNA-seq, whole-transcriptomic responses to increased and decreased temperatures in a thermophilous keystone sea urchin, Arbacia lixula, whose populations are increasing in the Mediterranean. This species is a key driver of benthic communities' structure due to its grazing activity. We found a strong response to experimentally induced cold temperature (7°C), with 1,181 differentially expressed transcripts relative to the control condition (13°C), compared to only 179 in the warm (22°C) treatment. A total of 84 (cold treatment) and three (warm treatment) gene ontology terms were linked to the differentially expressed transcripts. At 7°C the expression of genes encoding different heat shock proteins (HSPs) was upregulated, together with apoptotic suppressor genes (e.g., Bcl2), genes involved in the infection response and/or pathogen-recognition (e.g., echinoidin) and ATP-associated genes, while protein biosynthesis and DNA replication pathways were downregulated. At 22°C neither HSPs induction nor activation of the previously mentioned pathways were detected, with the exception of some apoptotic-related activities that were upregulated. Our results suggest a strong transcriptional response associated with low temperatures, and support the idea of low water temperature being a major limitation for A. lixula expansion across deep Mediterranean and northern Atlantic waters.


Gene Expression Profiling , Transcriptome , Computational Biology , Gene Ontology , Temperature
14.
Mar Environ Res ; 159: 104993, 2020 Jul.
Article En | MEDLINE | ID: mdl-32662432

Ocean warming associated with global climate change renders marine ecosystems susceptible to biological invasions. Here, we used species distribution models to project habitat suitability for eight invasive ascidians under present-day and future climate scenarios. Distance to shore and maximum sea surface temperature were identified as the most important variables affecting species distributions. Results showed that eight ascidians might respond differently to future climate change. Alarmingly, currently colonized areas are much smaller than predicted, suggesting ascidians may expand their invasive ranges. Areas such as Americas, Europe and Western Pacific have high risks of receiving new invasions. In contrast, African coasts, excluding the Mediterranean side, are not prone to new invasions, likely due to the high sea surface temperature there. Our results highlight the importance of climate change impacts on future invasions and the need for accurate modelling of invasion risks, which can be used as guides to develop management strategies.


Climate Change , Urochordata , Animals , Ecosystem , Europe , Introduced Species , Temperature
15.
Ecol Appl ; 30(2): e02036, 2020 03.
Article En | MEDLINE | ID: mdl-31709684

Metabarcoding is by now a well-established method for biodiversity assessment in terrestrial, freshwater, and marine environments. Metabarcoding data sets are usually used for α- and ß-diversity estimates, that is, interspecies (or inter-MOTU [molecular operational taxonomic unit]) patterns. However, the use of hypervariable metabarcoding markers may provide an enormous amount of intraspecies (intra-MOTU) information-mostly untapped so far. The use of cytochrome oxidase (COI) amplicons is gaining momentum in metabarcoding studies targeting eukaryote richness. COI has been for a long time the marker of choice in population genetics and phylogeographic studies. Therefore, COI metabarcoding data sets may be used to study intraspecies patterns and phylogeographic features for hundreds of species simultaneously, opening a new field that we suggest to name metaphylogeography. The main challenge for the implementation of this approach is the separation of erroneous sequences from true intra-MOTU variation. Here, we develop a cleaning protocol based on changes in entropy of the different codon positions of the COI sequence, together with co-occurrence patterns of sequences. Using a data set of community DNA from several benthic littoral communities in the Mediterranean and Atlantic seas, we first tested by simulation on a subset of sequences a two-step cleaning approach consisting of a denoising step followed by a minimal abundance filtering. The procedure was then applied to the whole data set. We obtained a total of 563 MOTUs that were usable for phylogeographic inference. We used semiquantitative rank data instead of read abundances to perform AMOVAs and haplotype networks. Genetic variability was mainly concentrated within samples, but with an important between seas component as well. There were intergroup differences in the amount of variability between and within communities in each sea. For two species, the results could be compared with traditional Sanger sequence data available for the same zones, giving similar patterns. Our study shows that metabarcoding data can be used to infer intra- and interpopulation genetic variability of many species at a time, providing a new method with great potential for basic biogeography, connectivity and dispersal studies, and for the more applied fields of conservation genetics, invasion genetics, and design of protected areas.


DNA Barcoding, Taxonomic , Eukaryota , Biodiversity , Fresh Water , Oceans and Seas
16.
Sci Rep ; 9(1): 15673, 2019 10 30.
Article En | MEDLINE | ID: mdl-31666562

The formation of chimeric entities through colony fusion has been hypothesized to favour colonisation success and resilience in modular organisms. In particular, it can play an important role in promoting the invasiveness of introduced species. We studied prevalence of chimerism and performed fusion experiments in Mediterranean populations of the worldwide invasive colonial ascidian Didemnum vexillum. We analysed single zooids by whole genome amplification and genotyping-by-sequencing and obtained genotypic information for more than 2,000 loci per individual. In the prevalence study, we analysed nine colonies and identified that 44% of them were chimeric, composed of 2-3 different genotypes. In the fusion experiment 15 intra- and 30 intercolony pairs were assayed but one or both fragments regressed and died in ~45% of the pairs. Among those that survived for the length of the experiment (30 d), 100% isogeneic and 31% allogeneic pairs fused. Fusion was unlinked to global genetic relatedness since the genetic distance between fused or non-fused intercolony pairs did not differ significantly. We could not detect any locus directly involved in allorecognition, but we cannot preclude the existence of a histocompatibility mechanism. We conclude that chimerism occurs frequently in D. vexillum and may be an important factor to enhance genetic diversity and promote its successful expansion.


Chimera/parasitology , Chimerism , Introduced Species , Urochordata/genetics , Animals , Chimera/genetics , Fishes/genetics , Fishes/parasitology , Urochordata/pathogenicity
17.
Heredity (Edinb) ; 122(2): 244-259, 2019 02.
Article En | MEDLINE | ID: mdl-29904170

The genetic structure of 13 populations of the amphiatlantic sea urchin Arbacia lixula, as well as temporal genetic changes in three of these localities, were assessed using ten hypervariable microsatellite loci. This thermophilous sea urchin is an important engineer species triggering the formation of barren grounds through its grazing activity. Its abundance seems to be increasing in most parts of the Mediterranean, probably favoured by warming conditions. Significant genetic differentiation was found both spatially and temporally. The main break corresponded to the separation of western Atlantic populations from those in eastern Atlantic and the Mediterranean Sea. A less marked, but significant differentiation was also found between Macaronesia (eastern Atlantic) and the Mediterranean. In the latter area, a signal of differentiation between the transitional area (Alboran Sea) and the rest of the Mediterranean was detected. However, no genetic structure is found within the Mediterranean (excluding Alboran) across the Siculo-Tunisian Strait, resulting from either enough gene flow to homogenize distance areas or/and a recent evolutionary history marked by demographic expansion in this basin. Genetic temporal variation at the Alboran Sea is as important as spatial variation, suggesting that temporal changes in hydrological features can affect the genetic composition of the populations. A picture of genetic homogeneity in the Mediterranean emerges, implying that the potential expansion of this keystone species will not be limited by intraspecific genetic features and/or potential impact of postulated barriers to gene flow in the region.


Arbacia/genetics , Genetic Variation , Animals , Arbacia/classification , Arbacia/physiology , Feeding Behavior , Gene Flow , Genetic Drift , Mediterranean Sea , Microsatellite Repeats , Spatio-Temporal Analysis
18.
Mar Environ Res ; 142: 40-47, 2018 Nov.
Article En | MEDLINE | ID: mdl-30269896

The distribution of intertidal organisms can depend on processes operating early in their life history. The ascidian Pyura praeputialis, a mid- to low-intertidal habitat-forming ecosystem engineer, was strongly associated with specific types of habitat (biogenic vs. bare rock). We examined field patterns and performed laboratory and field experiments to assess the nature of this association. Recruits were frequently found on the tunics of conspecifics and clumps of turfing coralline algae. Larvae preferred these same habitats in a series of laboratory settlement assays. Laboratory-reared juveniles (20- & 50-days-old) survived poorly on bare rock in the laboratory, while those on rugose surfaces - the tunic of adults and turfing corallines - showed high survivorship. Field-collected juveniles (<2 cm) affixed to these rugose habitats also exhibited high survivorship in the field. We conclude that both pre and post-settlement processes determine spatial pattern in this important habitat-forming taxon. The acute sensitivity of juveniles to desiccating conditions was unexpected in an intertidal organism.


Animal Distribution , Ecosystem , Life Cycle Stages/physiology , Urochordata/growth & development , Animals
19.
PeerJ ; 6: e5458, 2018.
Article En | MEDLINE | ID: mdl-30123723

Despite their abundance in benthic ecosystems, life cycles and reproductive features of most sponge species remain unknown. We have studied the main reproductive features of two demosponges, Dysidea avara and Phorbas tenacior, belonging to phylogenetically distant groups: Orders Dictyoceratida and Poecilosclerida, respectively. Both sponges are abundant and share habitat in the Mediterranean rocky sublittoral. They brood parenchymella larvae with different morphology and behaviour. Sampling was conducted monthly over a two-year period in a locality where both species coexist. The two species reproduced in spring-summer, and presented species-specific reproductive features despite being subject to the same environmental conditions. D. avara has a shorter reproductive period than P. tenacior, ending before the peak of temperature in summer, while the reproductive period of P. tenacior lasts until beginning of autumn. Brooding larvae were present in June-July in D. avara, and in August-October in P. tenacior. Larval size, reproductive effort and number of larvae produced (measured the month with the maximum production) were significantly higher in D. avara than in P. tenacior. A higher reproductive effort and larval traits point to a more opportunistic life strategy in D. avara than in P. tenacior. A lack of overlap in the timing of larval release, as well as different reproductive traits, may reduce competition and facilitate the coexistence of these two sympatric and abundant sponges.

20.
PeerJ ; 6: e4705, 2018.
Article En | MEDLINE | ID: mdl-29740514

Biodiversity assessment of marine hard-bottom communities is hindered by the high diversity and size-ranges of the organisms present. We developed a DNA metabarcoding protocol for biodiversity characterization of structurally complex natural marine hard-bottom communities. We used two molecular markers: the "Leray fragment" of mitochondrial cytochrome c oxidase (COI), for which a novel primer set was developed, and the V7 region of the nuclear small subunit ribosomal RNA (18S). Eight different shallow marine littoral communities from two National Parks in Spain (one in the Atlantic Ocean and another in the Mediterranean Sea) were studied. Samples were sieved into three size fractions from where DNA was extracted separately. Bayesian clustering was used for delimiting molecular operational taxonomic units (MOTUs) and custom reference databases were constructed for taxonomic assignment. Despite applying stringent filters, we found high values for MOTU richness (2,510 and 9,679 MOTUs with 18S and COI, respectively), suggesting that these communities host a large amount of yet undescribed eukaryotic biodiversity. Significant gaps are still found in sequence reference databases, which currently prevent the complete taxonomic assignment of the detected sequences. In our dataset, 85% of 18S MOTUs and 64% of COI MOTUs could be identified to phylum or lower taxonomic level. Nevertheless, those unassigned were mostly rare MOTUs with low numbers of reads, and assigned MOTUs comprised over 90% of the total sequence reads. The identification rate might be significantly improved in the future, as reference databases are further completed. Our results show that marine metabarcoding, currently applied mostly to plankton or sediments, can be adapted to structurally complex hard bottom samples. Thus, eukaryotic metabarcoding emerges as a robust, fast, objective and affordable method to comprehensively characterize the diversity of marine benthic communities dominated by macroscopic seaweeds and colonial or modular sessile metazoans. The 18S marker lacks species-level resolution and thus cannot be recommended to assess the detailed taxonomic composition of these communities. Our new universal primers for COI can potentially be used for biodiversity assessment with high taxonomic resolution in a wide array of marine, terrestrial or freshwater eukaryotic communities.

...