Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Muscle Nerve ; 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38922958

INTRODUCTION/AIMS: The precise relationship between molecular mimicry and tissue-specific autoimmunity is unknown. Major histocompatibility complex (MHC) class II antigen presenting cell-CD4+ T-cell receptor complex interactions are necessary for adaptive immunity. This study aimed to determine the role of endoneurial endothelial cell MHC class II in autoimmune polyneuropathy. METHODS: Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aaflox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aaflox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aaflox/flox; vWF-iCre/+ mice to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+, H2-Aaflox/flox; +/+, H2-Aa+/+; vWF-iCre/+ and untreated H2-Aaflox/flox; vWF-iCre/+ adult female SJL mice. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. RESULTS: Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+ mice were resistant to sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. DISCUSSION: A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo was developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.

2.
Autoimmunity ; 57(1): 2361745, 2024 Dec.
Article En | MEDLINE | ID: mdl-38850571

Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.


Disease Models, Animal , Animals , Humans , Mice , Neuritis, Autoimmune, Experimental/immunology , Mice, Knockout , Autoimmunity , Polyneuropathies/immunology , Polyneuropathies/etiology , Adaptive Immunity , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism
3.
bioRxiv ; 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38915676

Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.

4.
Vascul Pharmacol ; 155: 107369, 2024 Jun.
Article En | MEDLINE | ID: mdl-38554988

Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.


Endothelial Cells , Integrases , Mice, Inbred C57BL , Mice, Transgenic , Tamoxifen , von Willebrand Factor , Animals , Integrases/genetics , Integrases/metabolism , von Willebrand Factor/metabolism , von Willebrand Factor/genetics , Endothelial Cells/metabolism , Mice , Tamoxifen/pharmacology , Male , Humans , Megakaryocytes/metabolism , Microvessels/metabolism , Female , Promoter Regions, Genetic
5.
Adv Ther (Weinh) ; 6(4)2023 Apr.
Article En | MEDLINE | ID: mdl-37649593

Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.

6.
bioRxiv ; 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37546875

Introduction: Major histocompatibility complex (MHC) class II professional antigen presenting cell-naïve CD4+ T cell interactions via the T-cell receptor complex are necessary for adaptive immunity. MHC class II upregulation in multiple cell types occurs in human autoimmune polyneuropathy patient biopsies, necessitating studies to ascertain cellular signaling pathways required for tissue-specific autoimmunity. Methods: Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aa flox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aa flox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aa flox/flox ; vWF-iCre/+ to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in adult female SJL Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ mice and H2-Aa flox/flox ; +/+ littermate controls. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. Results: Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Adult female Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ did not develop sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. Discussion: A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo is developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.

7.
Brain Behav Immun ; 112: 220-234, 2023 08.
Article En | MEDLINE | ID: mdl-37315702

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.


Chronic Pain , Neuralgia , Mice , Humans , Animals , Inflammation , Macrophages , Fibroblasts , Antibodies, Neutralizing/pharmacology , Ganglia, Spinal , Hyperalgesia , Carrier Proteins , Glycoproteins
8.
Front Immunol ; 13: 935306, 2022.
Article En | MEDLINE | ID: mdl-35983047

Leukocyte infiltration and persistence within peripheral nerves have been implicated in chronic nociception pathogenesis in murine peripheral neuropathy models. Endoneurial cytokine and chemokine expression contribute to leukocyte infiltration and maintenance of a pro-inflammatory state that delays peripheral nerve recovery and promotes chronic pain behaviors in these mice. However, there has been a failure to translate murine model data into safe and effective treatments for chronic neuropathic pain in peripheral neuropathy patients, or develop reliable biomarkers that may help diagnose or determine treatment responses in affected patients. Initial work showed that persistent sciatic nerve CD11b+ CD45+ leukocyte infiltration was associated with disease severity in three mouse models of inflammatory and traumatic peripheral neuropathies, implying a direct contributing role in disease pathogenesis. In support of this, CD11b+ leukocytes were also seen in the sural nerve biopsies of chronic neuropathic pain patients with three different peripheral neuropathies. Systemic CD11b antagonism using a validated function-neutralizing monoclonal antibody effectively treated chronic nociception following unilateral sciatic nerve crush injury (a representative traumatic neuropathy model associated with axonal degeneration and increased blood-nerve barrier permeability) and does not cause drug addiction behaviors in adult mice. These data suggest that CD11b could be an effective molecular target for chronic neuropathic pain treatment in inflammatory and traumatic peripheral neuropathies. Despite known murine peripheral neuropathy model limitations, our initial work suggests that early expression of pro-inflammatory cytokines, such as tissue inhibitor of metalloproteinases-1 may predict subsequent chronic nociception development following unilateral sciatic nerve crush injury. Studies aligning animal model investigation with observational data from well-characterized human peripheral neuropathies, including transcriptomics and proteomics, as well as animal model studies using a human clinical trial design should foster the identification of clinically relevant biomarkers and effective targeted treatments with limited addiction potential for chronic neuropathic pain in peripheral neuropathy patients.


Crush Injuries , Neuralgia , Neuritis , Peripheral Nerve Injuries , Sciatic Neuropathy , Animals , Biomarkers , Crush Injuries/complications , Cytokines/metabolism , Disease Models, Animal , Humans , Integrins/therapeutic use , Leukocytes/metabolism , Mice , Neuralgia/drug therapy , Neuralgia/etiology , Peripheral Nerve Injuries/complications , Sciatic Neuropathy/complications
9.
J Investig Med High Impact Case Rep ; 10: 23247096221117801, 2022.
Article En | MEDLINE | ID: mdl-35993408

Dynamin 2 mutations are associated with Charcot-Marie-Tooth neuropathy. We report two siblings with a novel missense heterozygous point mutation (c.1609 G>A) in the highly conserved pleckstrin homology domain in exon 15 of Dynamin 2 presenting with progressive length-dependent sensorimotor polyneuropathy with mixed demyelinating and axonal features on electrodiagnostic studies. The previously unrecognized missense point mutation, which was inherited from their symptomatic but previously undiagnosed mother, was determined to be likely pathogenic based on a non-conservative amino acid substitution (p.Gly537Ser) that is predicted to damage secondary protein structure or function. This report emphasizes the importance of recognizing inherited neuropathies in clinical practice and evaluating suspected pathogenic gene variants initially classified to be of undetermined clinical significance in family cohorts. These cases add to the spectrum of pathogenic Dynamin 2 mutations associated with dominant-intermediate Charcot-Marie-Tooth neuropathy.


Charcot-Marie-Tooth Disease , Dynamin II , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Dynamin II/genetics , Humans , Mutation , Mutation, Missense
10.
J Investig Med High Impact Case Rep ; 9: 23247096211001646, 2021.
Article En | MEDLINE | ID: mdl-33733902

Patients with progressive hand weakness may be seen in ambulatory medical clinics or in emergency rooms due to direct effects on activities of daily living or inadvertent injury associated with overuse or attempts to maintain normal function. It is important to recognize potential cause(s) and perform appropriate diagnostic tests and referrals that aid guide appropriate treatment that may lead to good outcomes. Hirayama disease is an underrecognized disorder in young adults due to an asymmetric growth-associated cervical spinal cord compression injury. Awareness of this disorder by internists, emergency room physicians, and radiologists would prevent unnecessary tests and interventions that may contribute to disease progression by delaying appropriate treatments or treating inappropriately, with consequential effects on outcomes. In this article, we describe 3 Hirayama disease cases from a single tertiary care institution and demonstrate how delayed diagnosis affected outcomes in 2 patients and early recognition facilitated improved outcomes in a patient.


Hand Strength , Spinal Muscular Atrophies of Childhood , Activities of Daily Living , Cervical Vertebrae/injuries , Humans , Magnetic Resonance Imaging , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/diagnosis , Young Adult
13.
Exp Neurol ; 328: 113272, 2020 06.
Article En | MEDLINE | ID: mdl-32142802

A highly regulated endoneurial microenvironment is required for normal axonal function in peripheral nerves and nerve roots, which structurally consist of an outer collagenous epineurium, inner perineurium consisting of multiple concentric layers of specialized epithelioid myofibroblasts that surround the innermost endoneurium, which consists of myelinated and unmyelinated axons embedded in a looser mesh of collagen fibers. Endoneurial homeostasis is achieved by tight junction-forming endoneurial microvessels that control ion, solute, water, nutrient, macromolecule and leukocyte influx and efflux between the bloodstream and endoneurium, and the innermost layers of the perineurium that control interstitial fluid component flux between the freely permeable epineurium and endoneurium. Strictly speaking, endoneurial microvascular endothelium should be considered the blood-nerve barrier (BNB) due to direct communication with circulating blood. The mammalian BNB is considered the second most restrictive vascular system after the blood-brain barrier (BBB) based on classic in situ permeability studies. Structural alterations in endoneurial microvessels or interactions with hematogenous leukocytes have been described in several human peripheral neuropathies; however major advances in BNB biology in health and disease have been limited over the past 50 years. Guided by transcriptome and proteome studies of normal and pathologic human peripheral nerves, purified primary and immortalized human endoneurial endothelial cells that form the BNB and leukocytes from patients with well-characterized peripheral neuropathies, validated by in situ or ex vivo protein expression studies, data are emerging on the molecular and functional characteristics of the human BNB in health and in specific peripheral neuropathies, as well as chronic neuropathic pain. These early advancements have the potential to not only increase our understanding of how the BNB works and adapts or fails to adapt to varying insult, but provide insights relevant to pathogenic leukocyte trafficking, with translational potential and specific therapeutic application for chronic peripheral neuropathies and neuropathic pain.


Blood-Nerve Barrier , Homeostasis , Peripheral Nerves , Peripheral Nervous System Diseases , Humans
14.
J Peripher Nerv Syst ; 24(2): 195-206, 2019 06.
Article En | MEDLINE | ID: mdl-31119823

The blood-nerve barrier (BNB) formed by tight junction-forming endoneurial microvessels located in the innermost compartment of peripheral nerves, and the perineurium serve to maintain the internal microenvironment required for normal signal transduction. The specific molecular components that define the normal adult human BNB are not fully known. Guided by data derived from the adult human BNB transcriptome, we evaluated the in situ expression of 25 junctional complex, transporter, cell membrane, and cytoskeletal proteins in four histologically normal adult sural nerves by indirect fluorescent immunohistochemistry to determine proteins specifically expressed by restrictive endoneurial microvascular endothelium. Using Ulex Europaeus Agglutinin-1 expression to detect endothelial cells, we ascertained that the selected proteins were uniformly expressed in ≥90% of endoneurial microvessels. P-glycoprotein (also known as adenosine triphosphate-binding cassette subfamily B member 1) and solute carrier family 1 member 1 demonstrated restricted expression by endoneurial endothelium only, with classic tight junction protein claudin-5 also expressed on fenestrated epineurial macrovessels, and vascular-specific adherens junction protein cadherin-5 also expressed by the perineurium. The expression profiles of the selected proteins provide significant insight into the molecular composition of normal adult peripheral nerves. Further work is required to elucidate the human adult BNB molecular signature in order to better understand its development and devise strategies to restore function in peripheral neuropathies.


Blood-Nerve Barrier/metabolism , Microvessels/metabolism , Peripheral Nerves/metabolism , Transcriptome , Aged , Agglutinins/metabolism , Endothelial Cells/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged
15.
Tissue Barriers ; 6(4): 1-22, 2018.
Article En | MEDLINE | ID: mdl-30523753

The human blood-nerve barrier (BNB) formed by endoneurial microvascular endothelial cells, serves to maintain the internal microenvironment in peripheral nerves required for normal axonal signal transduction to and from the central nervous system. The mechanisms of human BNB formation in health and disease are not fully elucidated. Prior work established a sufficient role for glial-derived neurotrophic factor (GDNF) in enhancing human BNB biophysical properties following serum withdrawal in vitro via RET-tyrosine kinase-dependent cytoskeletal remodeling. The objective of the study was to ascertain the downstream signaling pathway involved in this process and more comprehensively determine the molecular changes that may occur at human BNB intercellular junctions under the influence of GDNF. Proteomic studies suggested expression of several mitogen-activated protein kinases (MAPKs) in confluent GDNF-treated endoneurial endothelial cells following serum withdrawal. Using electric cell-substrate impedance sensing to continuously measure transendothelial electrical resistance and static transwell solute permeability assays with fluoresceinated small and large molecules to evaluate BNB biophysical function, we determined MAPK signaling was essential for GDNF-mediated BNB TEER increase following serum withdrawal downstream of RET-tyrosine kinase signaling that persisted for up to 48 hours in vitro. This increase was associated with reduced solute permeability to fluoresceinated sodium and high molecular weight dextran. Specific GDNF-mediated alterations were detected in cytoskeletal and intercellular junctional complex molecular transcripts and proteins relative to basal conditions without exogenous GDNF. This work provides novel insights into the molecular determinants and mechanisms responsible for specialized restrictive human BNB formation in health and disease.


Blood-Nerve Barrier/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , MAP Kinase Signaling System/physiology , Endothelial Cells/metabolism , Humans , Peripheral Nerves/metabolism
16.
Tissue Barriers ; 6(2): 1-22, 2018.
Article En | MEDLINE | ID: mdl-29913111

There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.


Blood-Nerve Barrier/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Peripheral Nervous System Diseases/pathology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Crush , Nerve Regeneration/physiology , Peripheral Nervous System Diseases/metabolism , Permeability , Recovery of Function/physiology
17.
Sci Rep ; 7(1): 17477, 2017 12 12.
Article En | MEDLINE | ID: mdl-29234067

The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.


Blood-Nerve Barrier/metabolism , Transcriptome , Adult , Cells, Cultured , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Humans , Laser Capture Microdissection , Male , Middle Aged , Primary Cell Culture , Sciatic Nerve/metabolism , Sequence Analysis, RNA , Sural Nerve/metabolism
18.
Exp Neurol ; 292: 35-45, 2017 06.
Article En | MEDLINE | ID: mdl-28215575

The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25µM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation.


Fibronectins/metabolism , Inflammation/drug therapy , Leukocytes, Mononuclear/drug effects , Peptides/pharmacology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Aged , Animals , Cell Movement , Electrophysiological Phenomena/drug effects , Female , Humans , Intercellular Signaling Peptides and Proteins , Leukocytes/drug effects , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/metabolism , Protein Transport/drug effects
19.
Microvasc Res ; 109: 1-6, 2017 01.
Article En | MEDLINE | ID: mdl-27592219

Microvascular barrier permeability to water is an essential biophysical property required for the homeostatic maintenance of unique tissue microenvironments. This is of particular importance in peripheral nerves where strict control of ionic concentrations is needed for axonal signal transduction. Previous studies have associated inflammation, trauma, toxin exposure and metabolic disease with increases in water influx and hydrostatic pressure in peripheral nerves with resultant endoneurial edema that may impair axonal function. The regulation of water permeability across endoneurial microvessels that form the blood-nerve barrier (BNB) is poorly understood. Variations exist in apparatus and methods used to measure hydraulic conductivity. The objective of the study was to develop a simplified hydraulic conductivity system using commercially available components to evaluate the BNB. We determined the mean hydraulic conductivity of cultured confluent primary and immortalized human endoneurial endothelial cell layers as 2.00×10-7 and 2.17×10-7cm/s/cm H2O respectively, consistent with restrictive microvascular endothelial cells in vitro. We also determined the mean hydraulic conductivity of immortalized human brain microvascular endothelial cell layers, a commonly used blood-brain barrier (BBB) cell line, as 0.20×10-7cm/s/cm H2O, implying a mean 10-fold higher resistance to transendothelial water flux in the brain compared to peripheral nerves. To our knowledge, this is the first reported measurement of human BNB and BBB hydraulic conductivities. This model represents an important tool to further characterize the human BNB and deduce the molecular determinants and signaling mechanisms responsible for BNB hydraulic conductivity in normal and disease states in vitro.


Blood-Nerve Barrier , Capillary Permeability , Cytological Techniques , Animals , Antigens, Polyomavirus Transforming/immunology , Axons/metabolism , Cattle , Cell Line , Cell Membrane Permeability , Cytokines/metabolism , Endothelial Cells/cytology , Fibroblasts/metabolism , Homeostasis , Humans , Inflammation , Mice , Peripheral Nerves , Permeability , Rats , Sheep , Signal Transduction , Swine , Tight Junctions/metabolism , Water/chemistry
20.
Acta Neuropathol ; 132(5): 739-752, 2016 11.
Article En | MEDLINE | ID: mdl-27460017

The molecular determinants and mechanisms involved in leukocyte trafficking across the blood-nerve barrier (BNB) in the acute inflammatory demyelinating polyradiculoneuropathy (AIDP) variant of Guillain-Barré syndrome are incompletely understood. Prior work using a flow-dependent in vitro human BNB model demonstrated a crucial role for αM-integrin (CD11b)-intercellular adhesion molecule-1 interactions in AIDP patient leukocyte trafficking. The aim of this study is to directly investigate the biological relevance of CD11b in AIDP pathogenesis. Immunohistochemistry was performed on three AIDP patient sural nerve biopsies to evaluate endoneurial leukocyte CD11b expression. A severe murine experimental autoimmune neuritis (sm-EAN) model was utilized to determine the functional role of CD11b in leukocyte trafficking in vivo and determine its effect on neurobehavioral measures of disease severity, electrophysiological assessments of axonal integrity and myelination and histopathological measures of peripheral nerve inflammatory demyelination. Time-lapse video microscopy and electron microscopy were employed to observe structural alterations at the BNB during AIDP patient leukocyte trafficking in vitro and in situ, respectively. Large clusters of endoneurial CD11b+ leukocytes associated with demyelinating axons were observed in AIDP patient sural nerves. Leukocyte CD11b expression was upregulated during sm-EAN. 5 mg/kg of a function-neutralizing monoclonal rat anti-mouse CD11b antibody administered after sm-EAN disease onset significantly ameliorated disease severity, as well as electrophysiological and histopathological parameters of inflammatory demyelination compared to vehicle- and isotype antibody-treated mice. Consistent with in vitro observations of leukocyte trafficking at the BNB, electron micrographs of AIDP patient sural nerves demonstrated intact electron-dense endoneurial microvascular intercellular junctions during paracellular mononuclear leukocyte transmigration. Our data support a crucial pathogenic role of CD11b in AIDP leukocyte trafficking, providing a potential therapeutic target for demyelinating variants of Guillain-Barré syndrome.


CD11b Antigen/genetics , Guillain-Barre Syndrome/metabolism , Guillain-Barre Syndrome/pathology , Leukocytes/metabolism , Animals , Antibodies/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Tracking , Disease Models, Animal , Electric Stimulation , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Guillain-Barre Syndrome/drug therapy , Guillain-Barre Syndrome/genetics , Humans , Immunoglobulins, Intravenous/therapeutic use , Leukocytes/pathology , Leukocytes/ultrastructure , Male , Mice , Microscopy, Electron , Neural Conduction , Neurofilament Proteins/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/physiopathology , Statistics, Nonparametric
...