Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1395380, 2024.
Article in English | MEDLINE | ID: mdl-39040096

ABSTRACT

Introduction: The intestinal immune system plays a pivotal role in the induction of immune responses against food. In the case of T cell response, dendritic cells (DCs) are especially important. However, the regulation of immune responses to food by intestinal DCs has been poorly described. In this study, we analyzed the effect of Lactococcus lactis subsp. cremoris YRC3780, a lactic acid bacterial strain isolated from kefir, a traditional fermented milk product, on the immune responses induced by antigen presentation by intestinal DCs to T cells as well as the mechanism of action of these immunomodulatory effects. It has been shown that L. cremoris YRC3780 ameliorates the symptoms of pollinosis in both animal and human studies. Methods: CD11c+ cells from mesenteric lymph nodes (MLNs) of BALB/c mice were cultured as MLN DCs with L. cremoris YRC3780 and expression of genes inducing regulatory T cells (Tregs) was examined by qPCR. In addition, MLN DCs were cocultured with CD4+ T cells from DO11.10 transgenic mice expressing an ovalbumin (OVA)-specific TCR and the OVA antigen peptide and L. cremoris YRC3780. Induction of Tregs was examined by flow cytometry, gene expression was analyzed by DNA microarray and qPCR, and the production of cytokines was measured by ELISA. MLN DCs from TLR2-deficient mice and components of L. cremoris YRC3780 were used to examine the recognition of YRC3780 by MLN DCs. Results: L. cremoris YRC3780 enhanced the expression of genes involved in Treg induction in MLN DCs and induced Foxp3+CD4+T cells in an MLN DC and CD4+ T-cell co-culture system. The effect on MLN DCs was likely mediated by receptors other than TLR2. Together with microarray analyses of CD4+ T cell gene expression and cytokine ELISA, it was demonstrated that L. cremoris YRC3780 promoted the induction of Th1 and Tregs, and regulated the balance of Th1/Th2 and Treg/Th17 cells involving multiple genes via the antigen-presentation of MLN DCs. Discussion: Our findings provide insights into the modulation of intestinal immune responses mediated by DCs and the antiallergic effects of lactic acid bacteria.


Subject(s)
Cell Differentiation , Dendritic Cells , Lactococcus lactis , Lymph Nodes , Mice, Inbred BALB C , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Dendritic Cells/immunology , Mice , Lymph Nodes/immunology , Lactococcus lactis/immunology , Cell Differentiation/immunology , Mesentery/immunology , Cytokines/metabolism , Mice, Transgenic , Lymphocyte Activation/immunology , Coculture Techniques , Female
2.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 228-236, 2024.
Article in English | MEDLINE | ID: mdl-38945888

ABSTRACT

Alaska pollack protein (APP), has been reported as a protein source that can enhance muscle hypertrophy more than other protein sources in animal studies. This study aimed to examine the effects of APP ingestion on muscle quantity and quality in young adults. Fifty-five young college students were assigned to two groups: APP and placebo (whey protein: WP) groups, and instructed to ingest 4.5 g of each protein in addition to daily meals, and to maintain their usual daily physical activities for 3 mo. Twenty-one and 23 students completed the intervention and were analyzed in APP and WP groups, respectively. The maximum knee extension torque significantly increased in both groups during the intervention. The motor unit discharge rate, which is an indicator of activation, for a given force level significantly decreased in both groups during the intervention, but its decrease in the APP group was significantly greater than in the WP group. Echo intensity of the vastus lateralis evaluated by ultrasound images significantly decreased in both groups. The muscle thickness and skeletal muscle mass did not change. Small amount of additional APP intake induces greater effects on neural activation than WP, suggesting the greater neural economy of generation of force.


Subject(s)
Dietary Proteins , Muscle, Skeletal , Humans , Young Adult , Male , Female , Muscle, Skeletal/physiology , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Adult , Adaptation, Physiological , Gadiformes , Torque , Quadriceps Muscle/physiology , Quadriceps Muscle/metabolism , Muscle Strength/drug effects , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL