Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915626

ABSTRACT

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are a major driver of multidrug resistance among Gram-negative bacteria. The periplasm provides a distinct environment between the inner and outer membranes of Gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the dynamics of the periplasmic adaptor protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug efflux pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting in domain specific organisation in neutral to weakly acidic regimes. We establish a unique histidine residue directs these structural dynamics and is essential for sustaining pump efflux activity across acidic, neutral, and alkaline conditions. Overall, we propose Mg2+ conserves the structural mobility of AcrA to ensure optimal AcrAB-TolC function within rapid changing environments commonly faced by the periplasm during bacterial infection and colonization. This work highlights that Mg2+ is an important mechanistic component in this pump class and possibly across other periplasmic lipoproteins.

2.
Nat Commun ; 14(1): 3900, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463890

ABSTRACT

Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αß barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Escherichia coli Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Biological Transport , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/metabolism
3.
ACS Infect Dis ; 8(10): 2149-2160, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36070489

ABSTRACT

Optimization of compound permeation into Gram-negative bacteria is one of the most challenging tasks in the development of antibacterial agents. Two permeability barriers─the passive diffusion barrier of the outer membrane (OM) and active drug efflux─act synergistically to protect cells from the antibacterial action of compounds. In Escherichia coli (E. coli) and relatives, these two barriers sieve compounds based on different physicochemical properties that are defined by their interactions with OM porins and efflux pumps, respectively. In this study, we critically tested the hypothesis that the best substrates and inhibitors of efflux pumps are compounds that can effectively permeate the OM and are available at relatively high concentrations in the periplasm. For this purpose, we filtered a large subset of the ZINC15 database of commercially available compounds for compounds containing a primary amine, a chemical feature known to facilitate the uptake through E. coli general porins. The assembled library was screened by ensemble docking to AcrA, the periplasmic component of the AcrAB-TolC efflux pump, followed by experimental testing of the top predicted binders for antibacterial activities, efflux recognition, and inhibition. We found that the filtered primary amine library is a rich source of compounds with efflux-inhibiting activities and identified efflux pump inhibitors with novel chemical scaffolds effective against E. coli AcrAB-TolC and efflux pumps of multidrug-resistant clinical isolates of Acinetobacter baumannii. However, primary amines are not required for the recognition of compounds by efflux pumps and their efflux-inhibitory activities.


Subject(s)
Escherichia coli , Membrane Transport Proteins , Amines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Membrane Transport Proteins/chemistry , Porins
4.
ACS Infect Dis ; 7(9): 2650-2665, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34379382

ABSTRACT

Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.


Subject(s)
Escherichia coli Proteins , Amides/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...