Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Exp Gerontol ; 194: 112510, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38964431

ABSTRACT

Dietary modifications such as caloric restriction (CR) and intermittent fasting (IF) have gained popularity due to their proven health benefits in aged populations. In time restricted feeding (TRF), a form of intermittent fasting, the amount of time for food intake is regulated without restricting the caloric intake. TRF is beneficial for the central nervous system to support brain health in the context of aging. Therefore, we here ask whether TRF also exerts beneficial effects in the aged retina. We compared aged mice (24 months) on a TRF paradigm (access to food for six hours per day) for either 6 or 12 months against young control mice (8 months) and aged control mice on an ad libitum diet. We examined changes in the retina at the functional (electroretinography), structural (histology and fluorescein angiograms) and molecular (gene expression) level. TRF treatment showed amelioration of age-related reductions in both scotopic and photopic b-wave amplitudes suggesting benefits for retinal interneuron signaling. TRF did not affect age-related signs of retinal inflammation or microglial activation at either the molecular or histological level. Our data indicate that TRF helps preserve some aspects of retinal function that are decreased with aging, adding to our understanding of the health benefits that altered feeding patterns may confer.

3.
Geroscience ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963648

ABSTRACT

This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.

4.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005396

ABSTRACT

Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the US (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the ß3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained ß3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic ß3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Our study provides foundational evidence for targeting adipose thermogenesis to improve age-related metabolic dysfunction.

5.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958537

ABSTRACT

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS: Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS: Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION: NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS: Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors.

6.
J Cereb Blood Flow Metab ; : 271678X241260526, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867576

ABSTRACT

Intra-vital visualization of deep cerebrovascular structures and blood flow in the aging brain has been a difficult challenge in the field of neurovascular research, especially when considering the key role played by the cerebrovasculature in the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Traditional imaging methods face difficulties with the thicker skull of older brains, making high-resolution imaging and cerebral blood flow (CBF) assessment challenging. However, functional ultrasound (fUS) imaging, an emerging non-invasive technique, provides real-time CBF insights with notable spatial-temporal resolution. This study introduces an enhanced longitudinal fUS method for aging brains. Using elderly (24-month C57BL/6) mice, we detail replacing the skull with a polymethylpentene window for consistent fUS imaging over extended periods. Ultrasound localization mapping (ULM), involving the injection of a microbubble (<<10 µm) suspension allows for recording of high-resolution microvascular vessels and flows. ULM relies on the localization and tracking of single circulating microbubbles in the blood flow. A FIJI-based analysis interprets these high-quality ULM visuals. Testing on older mouse brains, our method successfully unveils intricate vascular specifics even in-depth, showcasing its utility for longitudinal studies that require ongoing evaluations of CBF and vascular aspects in aging-focused research.

7.
Geroscience ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831182

ABSTRACT

Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.

9.
Geroscience ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914916

ABSTRACT

Cerebral microhemorrhages (CMHs) are of paramount importance as they not only signify underlying vascular pathology but also have profound implications for cognitive function and neurological health, serving as a critical indicator for the early detection and management of vascular cognitive impairment (VCI). This study aimed to investigate the effects of hypertension-induced CMHs on gait dynamics in a mouse model, focusing on the utility of advanced gait metrics as sensitive indicators of subclinical neurological alterations associated with CMHs. To induce CMHs, we employed a hypertensive mouse model, using a combination of Angiotensin II and L-NAME to elevate blood pressure, further supplemented with phenylephrine to mimic transient blood pressure fluctuations. Gait dynamics were analyzed using the CatWalk system, with emphasis on symmetry indices for Stride Length (SL), Stride Time (ST), and paw print area, as well as measures of gait entropy and regularity. The study spanned a 30-day experimental period, capturing day-to-day variations in gait parameters to assess the impact of CMHs. Temporary surges in gait asymmetry, detected as deviations from median gait metrics, suggested the occurrence of subclinical neurological signs associated with approximately 50% of all histologically verified CMHs. Our findings also demonstrated that increases in gait entropy correlated with periods of increased gait asymmetry, providing insights into the complexity of gait dynamics in response to CMHs. Significant correlations were found between SL and ST symmetry indices and between these indices and the paw print area symmetry index post-hypertension induction, indicating the interdependence of spatial and temporal aspects of gait affected by CMHs. Collectively, advanced gait metrics revealed sensitive, dynamic alterations in gait regulation associated with CMHs, resembling the temporal characteristics of transient ischemic attacks (TIAs). This underscores their potential as non-invasive indicators of subclinical neurological impacts. This study supports the use of detailed gait analysis as a valuable tool for detecting subtle neurological changes, with implications for the early diagnosis and monitoring of cerebral small vessel disease (CSVD) in clinical settings.

10.
Geroscience ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714609

ABSTRACT

Mental disorders are among the leading causes of disability worldwide, disproportionately affecting older people. This study aims to assess the mental health of elderly individuals living in a deprived region of Hungary, and to identify and estimate the weight of different determinants of mental health across different age groups. A cross-sectional study was conducted with randomly selected samples of individuals (n = 860) aged 18 years and older in Northeast Hungary. The World Health Organization Well-Being Index (WHO-5), the single-item Life Satisfaction Scale, and the 12-item General Health Questionnaire (GHQ-12) were used to measure mental health of the participants. Multiple linear regression analysis was performed to measure the association between sociodemographic and health-related variables and mental health. Overall, the mean WHO-5 score was 69.2 ± 18.1 and it showed a significant decrease by age (p < 0.001), with the lowest score observed in aged 75 years and above (p < 0.001). The mean life satisfaction score was 7.5 ± 1.9 and it showed a significant decreasing trend over the life course (p < 0.001). The highest level of psychological distress as assessed by GHQ-12 was observed in the group aged 75 years or older (11.5 ± 6.0, p < 0.001). Multiple linear regression indicated that self-reported financial status, social support, sense of control over their health, activity limitation and pain intensity were the most important determinants of mental health among older adults. Interventions to improve the mental health of older adults should focus on the positive impact of social support, the reduction of financial insecurity and the use of effective pain relief medications.

11.
Brain Spine ; 4: 102830, 2024.
Article in English | MEDLINE | ID: mdl-38764890

ABSTRACT

Introduction: Post-traumatic hypopituitarism (PTHP) is a significant, but often neglected consequence of traumatic brain injury (TBI). Research question: We aimed to provide a comprehensive overview of epidemiology, pathophysiology, clinical features and diagnostic approaches of PTHP. Materials and methods: MEDLINE, EMBASE, Cochrane Library and Web of Science were searched. 45 articles of human studies evaluating acute endocrine changes following mild, moderate and severe TBI were selected. Results: Severity of TBI seems to be the most important risk factor of PTHP. Adrenal insufficiency (AI) was present in 10% of TBI patients (prevalence can be as high as 50% after severe TBI), and hypocortisolemia is a predictor of mortality and long-term hypopituitarism. Suppression of the thyroid axis in 2-33% of TBI patients may be an independent predictor of adverse neurological outcome, as well. 9-36% of patients with severe TBI exhibit decreased function of the somatotrophic axis with a divergent effect on the central nervous system. Arginine-Vasopressin (AVP) deficiency is present in 15-51% of patients, associated with increased mortality and unfavorable outcome. Due to shear and injury of the stalk hyperprolactinemia is relatively common (2-50%), but it bears little clinical significance. Sex hormone levels remain within normal values. Discussion and conclusion: PTHP occurs frequently after TBI, affecting various axis and determining patients' outcome. However, evidence is scarce regarding exact epidemiology, diagnosis, and effective clinical application of hormone substitution. Future studies are needed to identify patients at-risk, determine the optimal timing for endocrine testing, and refine diagnostic and treatment approaches to improve outcome.

12.
Front Endocrinol (Lausanne) ; 15: 1299148, 2024.
Article in English | MEDLINE | ID: mdl-38752177

ABSTRACT

Introduction: Low socioeconomic status affects not only diagnosis rates and therapy of patients with diabetes mellitus but also their health behavior. Our primary goal was to examine diagnosis rates and therapy of individuals with diabetes living in Ormánság, one of the most deprived areas in Hungary and Europe. Our secondary goal was to examine the differences in lifestyle factors and cancer screening participation of patients with diagnosed and undiagnosed diabetes compared to healthy participants. Methods: Our study is a cross-sectional analysis using data from the "Ormánság Health Program". The "Ormánság Health Program" was launched to improve the health of individuals in a deprived region of Hungary. Participants in the program were coded as diagnosed diabetes based on diagnosis by a physician as a part of the program, self-reported diabetes status, and self-reported prescription of antidiabetic medication. Undiagnosed diabetes was defined as elevated blood glucose levels without self-reported diabetes and antidiabetic prescription. Diagnosis and therapeutic characteristics were presented descriptively. To examine lifestyle factors and screening participation, patients with diagnosed and undiagnosed diabetes were compared to healthy participants using linear regression or multinomial logistic regression models adjusted for sex and age. Results: Our study population consisted of 246 individuals, and 17.9% had either diagnosed (n=33) or undiagnosed (n=11) diabetes. Metformin was prescribed in 75.8% (n=25) of diagnosed cases and sodium-glucose cotransporter-2 inhibitors (SGLT-2) in 12.1% (n=4) of diagnosed patients. After adjustment, participants with diagnosed diabetes had more comorbidities (adjusted [aOR]: 3.50, 95% confidence interval [95% CI]: 1.34-9.18, p<0.05), consumed vegetables more often (aOR: 2.49, 95% CI: 1.07-5.78, p<0.05), but desserts less often (aOR: 0.33, 95% CI: 0.15-0.75, p<0.01) than healthy individuals. Patients with undiagnosed diabetes were not different in this regard from healthy participants. No significant differences were observed for cancer screening participation between groups. Conclusions: To increase recognition of diabetes, targeted screening tests should be implemented in deprived regions, even among individuals without any comorbidities. Our study also indicates that diagnosis of diabetes is not only important for the timely initiation of therapy, but it can also motivate individuals in deprived areas to lead a healthier lifestyle.


Subject(s)
Early Detection of Cancer , Life Style , Humans , Cross-Sectional Studies , Hungary/epidemiology , Female , Male , Middle Aged , Early Detection of Cancer/statistics & numerical data , Early Detection of Cancer/methods , Adult , Aged , Diabetes Mellitus/epidemiology , Diabetes Mellitus/diagnosis , Neoplasms/epidemiology , Neoplasms/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use
13.
Geroscience ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771423

ABSTRACT

The presence of prolonged symptoms after COVID infection worsens the workability and quality of life. 200 adults with long COVID syndrome were enrolled after medical, physical, and mental screening, and were divided into two groups based on their performance. The intervention group (n = 100) received supervised rehabilitation at Department of Pulmonology, Semmelweis University with the registration number 160/2021 between 01/APR/2021-31/DEC/2022, while an age-matched control group (n = 100) received a single check-up. To evaluate the long-term effects of the rehabilitation, the intervention group was involved in a 2- and 3-month follow-up, carrying out cardiopulmonary exercise test. Our study contributes understanding long COVID rehabilitation, emphasizing the potential benefits of structured cardiopulmonary rehabilitation in enhancing patient outcomes and well-being. Significant difference was found between intervention group and control group at baseline visit in pulmonary parameters, as forced vital capacity, forced expiratory volume, forced expiratory volume, transfer factor for carbon monoxide, transfer coefficient for carbon monoxide, and oxygen saturation (all p < 0.05). Our follow-up study proved that a 2-week long, patient-centered pulmonary rehabilitation program has a positive long-term effect on people with symptomatic long COVID syndrome. Our data showed significant improvement between two and three months in maximal oxygen consumption (p < 0.05). Multidisciplinary, individualized approach may be a key element of a successful cardiopulmonary rehabilitation in long COVID conditions, which improves workload, quality of life, respiratory function, and status of patients with long COVID syndrome.

14.
Geroscience ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727872

ABSTRACT

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.

15.
Redox Biol ; 73: 103189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788541

ABSTRACT

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.


Subject(s)
Aging , Aorta , Endothelium, Vascular , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Vasodilation , Animals , Mice , Mitochondria/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Reactive Oxygen Species/metabolism , Aorta/metabolism , Aorta/drug effects , Vasodilation/drug effects , Aging/metabolism , Male , Mice, Inbred C57BL , Aldehydes/metabolism , Aldehydes/pharmacology
16.
Nutrients ; 16(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612986

ABSTRACT

High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Resilience, Psychological , Animals , Mice , NF-E2-Related Factor 2/genetics , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/etiology , Cellular Senescence , Aging , Obesity/etiology , Biomarkers
17.
Heliyon ; 10(8): e29348, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628765

ABSTRACT

Introduction: Patients with advanced cancer tend to utilize the services of the health care system, particularly emergency departments (EDs), more often, however EDs aren't necessarily the most ideal environments for providing care to these patients. The objective of our study was to analyze the clinical and demographic characteristics of advanced patients with cancer receiving basic palliative care (BPC) or hospice care (HC), and to identify predictive factors of BPC and HC prior to their visit to the ED, in a large tertiary care center in Hungary. Methods: A retrospective, detailed analysis of patients receiving only BPC or HC, out of 1512 patients with cancer visiting the ED in 2018, was carried out. Sociodemographic and clinical data were collected via automated and manual chart review. Patients were followed up to determine length of survival. Descriptive and exploratory statistical analyses were performed. Results: Hospital admission, multiple (≥4x) ED visits, and respiratory cancer were independent risk factors for receiving only BPC (OR: 3.10, CI: 1.90-5.04; OR: 2.97, CI: 1.50-5.84; OR: 1.82, CI: 1.03-3.22, respectively), or HC (OR: 2.15, CI: 1.26-3.67; OR: 4.94, CI: 2.51-9.71; OR: 2.07, CI: 1.10-3.91). Visiting the ED only once was found to be a negative predictive factor for BPC (OR: 0.28, CI: 0.18-0.45) and HC (OR: 0.18, 0.10-0.31) among patients with cancer visiting the ED. Conclusions: Our study is the first from this European region to provide information regarding the characteristics of patients with cancer receiving BPC and HC who visited the ED, as well as to identify possible predictive factors of receiving BPC and HC. Our study may have relevant implications for health care planning strategies in practice.

18.
Geroscience ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658505

ABSTRACT

Colorectal cancer, recognized as a quintessential age-related disease, underscores the intricate interplay between aging mechanisms and disease pathogenesis. Cellular senescence, a DNA damage-induced cellular stress response, is characterized by cell cycle arrest, the expression of an inflammatory senescence-associated secretory phenotype, and alterations in extracellular matrix metabolism. It is widely recognized as a fundamental and evolutionarily conserved mechanism of aging. Guided by geroscience principles, which assert that the pathogenesis of age-related diseases involves cellular mechanisms of aging, this study delves into the role of senescence-related genes in colon cancer progression. Leveraging a gene set reflective of senescence-associated pathways, we employed uni- and multivariate Cox proportional hazards survival analysis combined with the determination of the false discovery rate to analyze correlations between gene expression and survival. The integrated database of 1130 colon cancer specimens with available relapse-free survival time and relapse event data from ten independent cohorts provided a robust platform for survival analyses. We identified senescence-related genes associated with differential expression levels linked to shorter survival. Our findings unveil a prognostic signature utilizing cellular senescence-related genes (hazard ratio: 2.73, 95% CI 2.12-3.52, p = 6.4E - 16), offering valuable insights into survival prediction in colon cancer. Multivariate analysis underscored the independence of the senescence-related signature from available epidemiological and pathological variables. This study highlights the potential of senescence-related genes as prognostic biomarkers. Overall, our results underscore the pivotal role of cellular senescence, a fundamental mechanism of aging, in colon cancer progression.

19.
Geroscience ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639833

ABSTRACT

Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.

20.
Brain Commun ; 6(2): fcae080, 2024.
Article in English | MEDLINE | ID: mdl-38495306

ABSTRACT

Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.

SELECTION OF CITATIONS
SEARCH DETAIL
...