Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
PLoS One ; 12(2): e0173071, 2017.
Article in English | MEDLINE | ID: mdl-28235095

ABSTRACT

Deep-sea ferromanganese crusts are found ubiquitously on the surface of seamounts of the world's oceans. Considering the wide distribution of the crusts, archaeal and bacterial communities on these crusts potentially play a significant role in biogeochemical cycling between oceans and seamounts; however little is known about phylogenetic diversity, abundance and function of the crust communities. To this end, we collected the crusts from the northwest Pacific basin and the Philippine Sea. We performed comprehensive analysis of the archaeal and bacterial communities of the collected crust samples by culture-independent molecular techniques. The distance between the sampling points was up to approximately 2,000 km. Surrounding sediments and bottom seawater were also collected as references near the sampling points of the crusts, and analyzed together. 16S rRNA gene analyses showed that the community structure of the crusts was significantly different from that of the seawater. Several members related to ammonia-oxidizers of Thaumarchaeota and Betaproteobacteria were detected in the crusts at most of all regions and depths by analyses of 16S rRNA and amoA genes, suggesting that the ammonia-oxidizing members are commonly present in the crusts. Although members related to the ammonia-oxidizers were also detected in the seawater, they differed from those in the crusts phylogenetically. In addition, members of uncultured groups of Alpha-, Delta- and Gammaproteobacteria were commonly detected in the crusts but not in the seawater. Comparison with previous studies of ferromanganese crusts and nodules suggests that the common members determined in the present study are widely distributed in the crusts and nodules on the vast seafloor. They may be key microbes for sustaining microbial ecosystems there.


Subject(s)
Archaea/genetics , Bacteria/genetics , Microbial Consortia/genetics , Geologic Sediments , Molecular Typing , Pacific Ocean , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Water Microbiology
2.
ISME J ; 11(2): 529-542, 2017 02.
Article in English | MEDLINE | ID: mdl-27754478

ABSTRACT

Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Geologic Sediments/microbiology , Hydrothermal Vents/microbiology , Microbial Consortia , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Environment , Geologic Sediments/chemistry , Hot Temperature , Methane/analysis , Oceans and Seas , Phylogeny , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Seawater/microbiology , Sequence Analysis, DNA , Sulfates/analysis
3.
Environ Microbiol ; 17(5): 1817-35, 2015 May.
Article in English | MEDLINE | ID: mdl-25330135

ABSTRACT

Seafloor massive sulfides are a potential energy source for the support of chemosynthetic ecosystems in dark, deep-sea environments; however, little is known about microbial communities in these ecosystems, especially below the seafloor. In the present study, we performed culture-independent molecular analyses of sub-seafloor sulfide samples collected in the Southern Mariana Trough by drilling. The depth for the samples ranged from 0.52 m to 2.67 m below the seafloor. A combination of 16S rRNA and functional gene analyses suggested the presence of chemoautotrophs, sulfur-oxidizers, sulfate-reducers, iron-oxidizers and iron-reducers. In addition, mineralogical and thermodynamic analyses are consistent with chemosynthetic microbial communities sustained by sulfide minerals below the seafloor. Although distinct bacterial community compositions were found among the sub-seafloor sulfide samples and hydrothermally inactive sulfide chimneys on the seafloor collected from various areas, we also found common bacterial members at species level including the sulfur-oxidizers and sulfate-reducers, suggesting that the common members are widely distributed within massive sulfide deposits on and below the seafloor and play a key role in the ecosystem function.


Subject(s)
Carbon/chemistry , Geologic Sediments/microbiology , Iron/chemistry , Microbiota/genetics , Sulfur/chemistry , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Base Sequence , Ecosystem , Geologic Sediments/analysis , Geologic Sediments/chemistry , Microbiota/physiology , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfides/chemistry
4.
Int J Syst Evol Microbiol ; 65(Pt 1): 235-241, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25336721

ABSTRACT

A novel, obligately chemolithoautotrophic, sulfur-oxidizing bacterial strain, designated strain gps52(T), was isolated from a rock sample collected near the hydrothermal vents of the Suiyo Seamount in the Pacific Ocean. The cells possessed a Gram-stain-negative-type cell wall and contained menaquinone-8(H4) and menaquinone-9(H4) as respiratory quinones, and C16 : 1ω7c, C16 : 0 and C18 : 1ω7c as major cellular fatty acids. Neither storage compounds nor extensive internal membranes were observed in the cells. Strain gps52(T) grew using carbon dioxide fixation and oxidation of inorganic sulfur compounds with oxygen as electron acceptor. Optimal growth was observed at 32 °C, pH 6.5 and with 3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain gps52(T) belongs to the family Ectothiorhodospiraceae and is different from any other known bacteria, with sequence similarities of less than 93 %. Based on phenotypic and phylogenetic findings, the isolate is considered to represent a novel genus and species in the family Ectothiorhodospiraceae, and the name Thiogranum longum gen. nov., sp. nov. is proposed. The type strain is gps52(T) ( = NBRC 101260(T) = DSM 19610(T)). An emended description of the genus Thiohalomonas is also proposed.


Subject(s)
Ectothiorhodospiraceae/classification , Hydrothermal Vents/microbiology , Phylogeny , Sulfur/metabolism , Bacterial Typing Techniques , Base Composition , Chemoautotrophic Growth , DNA, Bacterial/genetics , Ectothiorhodospiraceae/genetics , Ectothiorhodospiraceae/isolation & purification , Fatty Acids/chemistry , Molecular Sequence Data , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
5.
Appl Environ Microbiol ; 80(19): 6126-35, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25063666

ABSTRACT

The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Geologic Sediments/microbiology , Seawater/microbiology , Archaea/genetics , Bacteria/genetics , Base Sequence , Cluster Analysis , DNA Primers/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Ecosystem , Expeditions , Geography , Geologic Sediments/chemistry , Hydrothermal Vents , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Seawater/chemistry , Sequence Analysis, DNA
6.
Front Microbiol ; 4: 327, 2013.
Article in English | MEDLINE | ID: mdl-24265628

ABSTRACT

During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

7.
ISME J ; 7(3): 555-67, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23096400

ABSTRACT

Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO(2) in the seabed. The emission of CO(2) may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO(2) and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO(2)-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO(2) concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO(2) concentration, indicating that microbial activity and community structure are sensitive to CO(2) venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13-30 cm in depth) characterized by high CO(2). Measurement of the potential sulfate reduction rate at pH conditions of 3-9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO(2)-seep sedimentary environment; however, CO(2) and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community.


Subject(s)
Archaea/physiology , Bacterial Physiological Phenomena , Environment , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Load , Biodiversity , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Hydrogen-Ion Concentration , Methane/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Temperature
8.
FEMS Microbiol Lett ; 321(2): 121-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21631576

ABSTRACT

The abundance and phylogenetic diversity of the microbial community in the hydrogenetic ferromanganese crust, sandy sediment and overlying seawater were investigated using a culture-independent molecular analysis based on the 16S rRNA gene. These samples were carefully collected from the Takuyo-Daigo Seamount, located in the northwest Pacific Ocean, by a remotely operated vehicle. Based on quantitative PCR analysis, Archaea occupy a significant portion of the prokaryotic communities in the ferromanganese crust and the sediment samples, while Bacteria dominated in the seawater samples. Phylotypes belonging to Gammaproteobacteria and to Marine group I (MGI) Crenarchaeota were abundant in clone libraries constructed from the ferromanganese crust and sediment samples, while those belonging to Alphaproteobacteria were abundant in that from the seawater sample. Comparative analysis indicates that over 80% of the total phylotype richness estimates for the crust community were unique as compared with the sediment and seawater communities. Phylotypes related to Nitrosospira belonging to the Betaproteobacteria and those related to Nitrosopumilus belonging to MGI Crenarchaeota were detected in the ferromanganese crust, suggesting that these ammonia-oxidizing chemolithoautotrophs play a role as primary producers in the microbial ecosystem of hydrogenetic ferromanganese crusts that was formed as precipitates from seawater.


Subject(s)
Geologic Sediments/microbiology , Iron , Manganese , Proteobacteria/genetics , Water Microbiology , DNA, Bacterial/analysis , Pacific Ocean , Proteobacteria/classification , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/analysis
9.
Int J Syst Evol Microbiol ; 61(Pt 10): 2412-2418, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21075906

ABSTRACT

A novel mesophilic, facultatively anaerobic, sulfur-oxidizing bacterial strain, designated gps61(T), was isolated from a surface rock sample collected from the hydrothermal field of Suiyo Seamount on the Izu-Bonin Arc in the Western Pacific Ocean. Cells of the isolate were rod-shaped with a single sheathed polar flagellum. Neither extensive internal membranes nor storage materials were present in the cells. In a 20 % CO(2) atmosphere, strain gps61(T) grew using thiosulfate, sulfur or tetrathionate as electron donors and oxygen or nitrate as electron acceptors. Other substrates, including organic acids and sugars, did not support growth, indicating that strain gps61(T) was an obligate chemolithoautotroph. 16S rRNA gene sequence analysis revealed that strain gps61(T) was closely related to Thioprofundum lithotrophicum 106(T) (98.5 % sequence similarity) in the order Chromatiales. Phylogenetic trees grouped strain gps61(T) and Thioprofundum lithotrophicum in the same cluster along with Thioalkalispira microaerophila and Thiohalophilus thiocyanoxidans, but it was apparent from the analysis that the novel strain had definitely departed from the family lineage. On the basis of its phylogenetic position along with its morphological and physiological characteristics, strain gps61(T) ( = NBRC 101261(T)  = DSM 18546(T)) represents a novel species of the genus Thioprofundum, for which the name Thioprofundum hispidum sp. nov. is proposed. In addition, we propose a novel family name, Thioalkalispiraceae, in the order Chromatiales, to accommodate the genera Thioalkalispira, Thiohalophilus and Thioprofundum.


Subject(s)
Gammaproteobacteria/classification , Gammaproteobacteria/isolation & purification , Hydrothermal Vents/microbiology , Sulfur/metabolism , Aerobiosis , Anaerobiosis , Bacterial Typing Techniques , Base Composition , Chemoautotrophic Growth , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Flagella/ultrastructure , Gammaproteobacteria/genetics , Gammaproteobacteria/physiology , Microscopy , Molecular Sequence Data , Oxidation-Reduction , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Rapid Commun Mass Spectrom ; 24(10): 1397-404, 2010 May 30.
Article in English | MEDLINE | ID: mdl-20411578

ABSTRACT

We present a method for in situ sulphur (S) isotopic analysis of significantly small areas (1.5 microm in diameter) in pyrite using secondary ion mass spectrometry (NanoSIMS) to interpret microbial sulphur metabolism in the early earth. We evaluated the precision and accuracy of S isotopic ratios obtained by this method using hydrothermal pyrite samples with homogeneous S isotopic ratios. The internal precision of the delta(34)S value was 1.5 per thousand at the level of 1 sigma of standard error (named 1SE) for a single spot, while the external reproducibility was estimated to be 1.6 per thousand at the level of 1 sigma of standard deviation (named 1SD, n = 25). For each separate sample, the average delta(34)S value was comparable with that measured by a conventional method, and the accuracy was better than 2.3 per thousand. Consequently, the in situ method is sufficiently accurate and precise to detect the S isotopic variations of small sample of the pyrite (less than 20 microm) that occurs ubiquitously in ancient sedimentary rocks. This method was applied to measure the S isotopic distribution of pyrite within black chert fragments in early Archean sandstone. The pyrite had isotopic zoning with a (34)S-depleted core and (34)S-enriched rim, suggesting isotopic evolution of the source H(2)S from -15 to -5 per thousand. Production of H(2)S by microbial sulphate reduction (MSR) in a closed system provides a possible explanation for both the (34)S-depleted initial H(2)S and the progressive increase in the delta(34)S(H2S) value. Although more extensive data are necessary to strengthen the explanation for the origin of the MSR, the results show that the S isotopic distribution within pyrite crystals may be a key tracer for MSR activity in the early earth.

11.
Environ Microbiol ; 11(12): 3210-22, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19691504

ABSTRACT

To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.


Subject(s)
Geologic Sediments/microbiology , Proteobacteria/isolation & purification , Seawater/microbiology , Base Sequence , Ecosystem , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Pacific Ocean , Phylogeny , Proteobacteria/classification , Proteobacteria/metabolism , RNA, Ribosomal, 16S
12.
Int J Syst Evol Microbiol ; 59(Pt 11): 2894-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19628600

ABSTRACT

An anaerobic, thermophilic, thiosulfate-reducing bacterium, strain AZM16c01(T), isolated from a hot spring in Japan [Mori, K., Sunamura, M., Yanagawa, K., Ishibashi, J., Miyoshi, Y., Iino, T., Suzuki, K. & Urabe, T. (2008). Appl Environ Microbiol 74, 6223-6229] was characterized in detail. The 16S rRNA gene sequence analysis had revealed that strain AZM16c01(T) was the first cultivated representative of the candidate phylum OP5. The cells were multicellular filaments with a single polar flagellum. The strain contained iso-C(17 : 0) as the major fatty acid and menaquinone-8(H(6)), menaquinone-8(H(8)) and menaquinone-8(H(10)) as the respiratory quinones. The G+C content of the genomic DNA of strain AZM16c01(T) was 34.6 mol%. Optimum growth was obtained at 65 degrees C, pH 6.5 and in the absence of NaCl, with a doubling time of 10.6 h. On the basis of the results of phylogenetic analysis based on the 16S rRNA gene sequence and the characterization of the strain in this study, we propose the name Caldisericum exile gen. nov., sp. nov. for strain AZM16c01(T) (=NBRC 104410(T)=DSM 21853(T)). In addition, we propose the new phylum name Caldiserica phyl. nov. for the candidate phylum OP5 represented by C. exile gen. nov., sp. nov., and Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Hot Springs/microbiology , Anaerobiosis , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fatty Acids/metabolism , Hot Temperature , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
13.
Appl Environ Microbiol ; 74(20): 6223-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18776034

ABSTRACT

The phylogenetic group termed OP5 was originally discovered in the Yellowstone National Park hot spring and proposed as an uncultured phylum; the group was afterwards analyzed by applying culture-independent approaches. Recently, a novel thermophilic chemoheterotrophic filamentous bacterium was obtained from a hot spring in Japan that was enriched through various isolation procedures. Phylogenetic analyses of the isolate have revealed that it is closely related to the OP5 phylum that has mainly been constructed with the environmental clones retrieved from thermophilic and mesophilic anaerobic environments. It appears that the lineage is independent at the phylum level in the domain Bacteria. Therefore, we designed a primer set for the 16S rRNA gene to specifically target the OP5 phylum and performed quantitative field analysis by using the real-time PCR method. Thus, the 16S rRNA gene of the OP5 phylum was detected in some hot-spring samples with the relative abundance ranging from 0.2% to 1.4% of the prokaryotic organisms detected. The physiology of the above-mentioned isolate and the related environmental clones indicated that they are scavengers contributing to the sulfur cycle in nature.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Hot Springs/microbiology , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Japan , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sulfur/metabolism
14.
Int J Syst Evol Microbiol ; 58(Pt 4): 810-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18398174

ABSTRACT

A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51T, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue-green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 degrees C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51T could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO2 fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus Archaeoglobus, with sequence similarities of 93.6-97.2 %; the closest relative was Archaeoglobus veneficus. Phylogenetic analyses of the dsrAB and apsA genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5'-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51T represents a novel species of the genus Archaeoglobus, for which the name Archaeoglobus infectus sp. nov. is proposed. The type strain is Arc51T (=NBRC 100649T=DSM 18877T).


Subject(s)
Archaeoglobus/classification , Archaeoglobus/isolation & purification , Archaeoglobus/genetics , Archaeoglobus/metabolism , Base Composition , Base Sequence , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genes, Bacterial , Geologic Sediments/microbiology , Hot Temperature , Mesna/metabolism , Microscopy, Electron, Transmission , Molecular Sequence Data , Pacific Ocean , Phenotype , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Species Specificity , Terminology as Topic
15.
Int J Syst Evol Microbiol ; 55(Pt 6): 2507-2514, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16280518

ABSTRACT

A cell-fusing hyperthermophilic archaeon was isolated from hydrothermal fluid obtained from Suiyo Seamount of the Izu-Bonin Arc. The isolate, TS1(T), is an irregular coccus, usually 0.5-2 microm in diameter and motile with a polar tuft of flagella. Cells in the exponential phase of growth fused at room temperature in the presence of DNA-intercalating dye to become as large as 5 microm in diameter. Fused cells showed dark spots that moved along in the cytoplasm. Large cells with a similar appearance were also observed upon culture at 87 degrees C, suggesting the occurrence of similar cell fusions during growth. Transmission electron microscopy revealed that cells in the exponential phase possessed a thin and electron-lucent cell envelope that could be lost subsequently during culture. The fragile cell envelope must be related to cell fusion. The cells grew at 57-90 degrees C, pH 5.2-8.7 and at NaCl concentrations of 1.5-4.5 %, with the optima being 87 degrees C, pH 6.5 and 2.5 % NaCl. The isolate was an anaerobic chemo-organotroph that grew on either yeast extract or tryptone as the sole growth substrate. The genomic DNA G+C content was 53.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the isolate was closely related to Thermococcus species. However, no significant DNA-DNA hybridization was observed between genomic DNA of strain TS1(T) and phylogenetically related Thermococcus species. We propose that isolate TS1(T) represents a novel species, Thermococcus coalescens sp. nov., with the name reflecting the cell fusion activity observed in the strain. The type strain is TS1(T) (=JCM 12540T=DSM 16538T).


Subject(s)
Thermococcus/isolation & purification , Base Composition , DNA, Archaeal/analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , Seawater/microbiology , Temperature , Thermococcus/classification , Thermococcus/genetics , Thermococcus/ultrastructure
16.
Adv Space Res ; 35(9): 1634-42, 2005.
Article in English | MEDLINE | ID: mdl-16175703

ABSTRACT

A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life.


Subject(s)
Archaeoglobales/isolation & purification , Ecosystem , Methanococcales/isolation & purification , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Archaea/genetics , Archaeoglobales/genetics , Biomass , Hot Temperature , Japan , Methanococcales/genetics , Pacific Ocean , Phylogeny , Polymerase Chain Reaction , RNA, Archaeal , Water Microbiology
17.
Appl Environ Microbiol ; 70(1): 393-403, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711668

ABSTRACT

This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.


Subject(s)
Archaea/genetics , Hot Temperature , Oxidoreductases Acting on Sulfur Group Donors/genetics , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Amino Acid Sequence , Archaea/classification , Archaea/enzymology , Archaea/isolation & purification , Base Sequence , DNA, Archaeal/analysis , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Electrophoresis/methods , Genes, rRNA , Molecular Sequence Data , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Pacific Ocean , Phylogeny , Polymerase Chain Reaction , Proteobacteria/classification , Proteobacteria/enzymology , Proteobacteria/isolation & purification , Sequence Analysis, DNA , Thermococcales/classification , Thermococcales/enzymology , Thermococcales/genetics
18.
FEMS Microbiol Ecol ; 47(3): 327-36, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-19712321

ABSTRACT

After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also noteworthy that some of the findings presented here were made possible by the application of the in situ growth chamber into the hot fluids deep inside the boreholes.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Hot Springs/microbiology , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Japan , Molecular Sequence Data , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
19.
Biol Sci Space ; 17(3): 190-1, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14676368

ABSTRACT

Searching for life in extreme terrestrial environments can be a model of that for extraterrestrial life. Submarine hydrothermal system is one of promising sites for the frontier of life on the earth. Here seawater and vent chimnies were collected from deep-sea hydrothermal vents at Suiyo Seamount, Izu-bonin arc, Pacific Ocean as a part of Archaean Park Project. Pure seawater sample of 300 degrees C (purity>97%) could be collected. Dissolved and total hydrolyzable amino acids were determined by ion-exchange HPLC, and their enantiomeric ratio was measured by reversed-phase HPLC for the first time. Glycine and serine were two most abundant amino acids, followed by other proteinous amino acids such as alanine, glutamic acid and aspartic acid. Non-proteinous amino acids were detected as minor constituents. Most of the amino acids detected were of the L-form. Thus amino acids of abiotic origin were quite minor, and most of the amino acids detected were formed biologically. These results, together with analytical results of the vent chimney samples, suggest that there is active microbial activities near the hydrothermal systems.


Subject(s)
Amino Acids/chemistry , Hot Temperature , Seawater/chemistry , Water Microbiology , Amino Acids/analysis , Pacific Ocean , Seawater/microbiology
20.
FEMS Microbiol Ecol ; 41(3): 199-209, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-19709254

ABSTRACT

The distribution and diversity of thermophilic sulfate-reducing bacteria at the Cu-Pb-Zn Toyoha underground mine, Japan, were investigated using denaturing gradient gel electrophoresis analysis based on the 16S rRNA gene, and sequence analysis of the dissimilatory sulfite reductase gene. Hydrothermal waters from different boreholes penetrating the Cu-Pb-Zn sulfide veins were collected and concentrated with a sterile filter (pore size: 0.2 mum) at sites A (64 degrees C), B (71 degrees C), and C (48 degrees C). Microbial mats developed at sites A (53 degrees C), B (66 degrees C), and D (73 degrees C) were harvested. The denaturing gel electrophoresis analysis showed 17 bacterial and three archaeal bands including two of spore-forming, Gram-positive sulfate-reducing bacteria, Desulfotomaculum-like 16S rDNA sequences from site B. The phylogenetic analysis of 16 clone families of dissimilatory sulfite reductase genes indicated that they are Desulfotomaculum-, Thermodesulforhabdus-like sequences, and unresolved sequences. We obtained evidence of the diversity and distribution of microbes related to thermophilic sulfate-reducing bacteria within effluent-hydrothermal groundwater and microbial mats in the thermophilic subsurface environment of the Toyoha Mine.

SELECTION OF CITATIONS
SEARCH DETAIL