Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 7(1): 369, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34845189

ABSTRACT

Long non-coding RNAs (lncRNAs) regulate numerous biological processes involved in both development and carcinogenesis. Hippo-YAP/TAZ signaling, a critical pathway responsible for organ size control, is often dysregulated in a variety of cancers. However, the nature and function of YAP/TAZ-regulated lncRNAs during tumorigenesis remain largely unexplored. By profiling YAP/TAZ-regulated lncRNAs, we identified SFTA1P as a novel transcriptional target and a positive feedback regulator of YAP/TAZ signaling. Using non-small cell lung cancer (NSCLC) cell lines, we show that SFTA1P is transcriptionally activated by YAP/TAZ in a TEAD-dependent manner. Functionally, knockdown of SFTA1P in NSCLC cell lines inhibited proliferation, induced programmed cell death, and compromised their tumorigenic potential. Mechanistically, SFTA1P knockdown decreased TAZ protein abundance and consequently, the expression of YAP/TAZ transcriptional targets. We provide evidence that this phenomenon could potentially be mediated via its interaction with TAZ mRNA to regulate TAZ translation. Our results reveal SFTA1P as a positive feedback regulator of Hippo-YAP/TAZ signaling, which may serve as the molecular basis for lncRNA-based therapies against YAP/TAZ-driven cancers.

2.
Cancers (Basel) ; 13(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670427

ABSTRACT

The Hippo-YAP/TAZ signaling pathway is an evolutionarily conserved signaling pathway involved in a broad spectrum of biological processes, including tumorigenesis. Whilst aberrant Hippo-YAP/TAZ signaling is frequently reported in various cancers, the genetic alterations of this pathway are relatively rare, suggesting regulation at the post-transcriptional level. MicroRNAs play key role in tumorigenesis by regulating gene expression post-transcriptionally. Amongst the cancer-relevant microRNAs, miR-582-5p suppresses cell growth and tumorigenesis by inhibiting the expression of oncogenes, including AKT3, MAP3K2 and NOTCH1. Given the oncogenic role of YAP/TAZ in solid tumors, we scrutinized the possible interplay between miR-582-5p and Hippo-YAP/TAZ signaling. Correlation analysis in NSCLC cells revealed a positive relationship between the expression of mature miR-582-5p and the proportion of phosphorylated YAP/TAZ. Intriguingly, YAP/TAZ knockdown reduced the expression of mature miR-582-5p but increased that of primary miR-582. Overexpression of miR-582-5p resulted in increased phosphorylation of YAP/TAZ with a concomitant reduction in cell proliferation and enhanced apoptosis. Mechanistically, we find that miR-582-5p targets actin regulators NCKAP1 and PIP5K1C, which may be responsible for the observed alteration in F-actin, known to modulate YAP/TAZ. We postulate that regulation of the actin cytoskeleton by miR-582-5p may attenuate YAP/TAZ activity. Altogether, this study reveals a novel mechanism of YAP/TAZ regulation by miR-582-5p in a cytoskeleton-dependent manner and suggests a negative feedback loop, highlighting the therapeutic potential of restoring miR-582-5p expression in treating NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...