Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703217

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Mitochondria , Oxidative Stress , Rats, Sprague-Dawley , TRPC Cation Channels , alpha-Synuclein , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Rats , Oxidative Stress/drug effects , Humans , TRPC Cation Channels/genetics , TRPC Cation Channels/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Male , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy
2.
Methods Mol Biol ; 2761: 529-557, 2024.
Article En | MEDLINE | ID: mdl-38427260

Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.


Parkinson Disease , Humans , Calcium/metabolism , Dopaminergic Neurons/metabolism , Ion Channels/metabolism , Parkinson Disease/metabolism
3.
Neurochem Int ; 174: 105691, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311217

Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.


Bifidobacterium breve , Neuroprotective Agents , Parkinson Disease , Probiotics , Rats , Female , Humans , Animals , Mice , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Oxidative Stress , Probiotics/pharmacology , Probiotics/therapeutic use , Dietary Supplements , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
4.
Neurochem Int ; 170: 105609, 2023 11.
Article En | MEDLINE | ID: mdl-37673218

Mechanical allodynia is a serious complication of painful diabetic neuropathy (PDN) with limited treatment options. The transient receptor potential canonical 5 (TRPC5) channel is a promising target in pain; however, its role in painful diabetic neuropathy has not yet been elucidated. In this study, we have investigated the role of TRPC5 channels using BTD [N-{3-(adamantan-2-yloxy)-propyl}-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)-propanamide)],a potent TRPC5 activator and HC070, as TRPC5 channel inhibitor in rat model of PDN. In this study, streptozotocin was used to induce diabetes in male Sprague-Dawley rats. The alterations in mechanical and thermal pain thresholds, nerve functional deficits in diabetic animals were assessed by various behavioral and functional parameters.TRPC5 involvement was investigated by treating neuropathic rats with BTD, TRPC5 channel activator (1 and 3 mg/kg, i.p. for 14 days) and HC070, a TRPC5 channel inhibitor (1 and 3 mg/kg). BTD and HC070 effects in pain reduction were assessed by western blotting, estimating oxidative stress and inflammatory markers in the lumbar spinal cord. BTD treatment (3 mg/kg, i.p.) once daily for 14 days ameliorated mechanical allodynia but not thermal hyposensation or nerve functional deficit in diabetic neuropathic rats. BTD treatment down-regulated TRPC5 expression by increasing the activity of protein kinase C. It also subsequently down-regulated the downstream pain markers (CAMKII, ERK) in the spinal cord. Additionally, a decrease in inflammatory cytokines (TNF-α, IL-6) also demonstrated BTD's potent anti-inflammatory properties in reducing mechanical allodynia. On the other hand, HC070 did not exert any beneficial effects on behavioural and nerve functional parameters. The study concludes that BTD ameliorated mechanical allodynia in a rat model of painful diabetic neuropathy not only through modulation of the TRPC5-CAMKII-ERK pathway but also through its anti-inflammatory and anti-apoptotic properties. Overall, BTD is a promising therapeutic molecule in the treatment of mechanical allodynia in painful diabetic neuropathy.


Diabetes Mellitus , Diabetic Neuropathies , Rats , Male , Animals , Hyperalgesia/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Rats, Sprague-Dawley , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , MAP Kinase Signaling System , Pain , TRPC Cation Channels/metabolism
5.
Life Sci ; 328: 121871, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37352915

AIMS: Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders. Therefore, we hypothesized that pharmacological blockade and knockdown of TRPC5 channels could attenuate the behavioural deficits and molecular changes seen in CNS disease models such as MPTP/MPP+ induced Parkinson's disease (PD). MATERIALS AND METHODS: In the present study, PD was induced after bilateral intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the Sprague Dawley rats. Additionally, SH-SY5Y neurons were exposed to 1-methyl-4-phenylpyridinium (MPP+) to further determine the role of TRPC5 channels in PD. KEY FINDINGS: We used clemizole hydrochloride, a potent TRPC5 channel blocker, to reverse the behavioural deficits, molecular changes and biochemical parameters in MPTP/MPP+-induced PD. Furthermore, knockdown of TRPC5 expression using siRNA also closely phenocopies these effects. We further observed restoration of tyrosine hydroxylase levels and improved mitochondrial health following clemizole treatment and TRPC5 knockdown. These changes were accompanied by diminished calcium influx, reduced levels of reactive oxygen species and decreased apoptotic signalling in the PD models. SIGNIFICANCE: These findings collectively suggest that increased expression of TRPC5 channels is a potential risk factor for PD and opens a new therapeutic window for the development of pharmacological agents targeting neurodegeneration and PD.


Neuroblastoma , Parkinson Disease , Transient Receptor Potential Channels , Animals , Humans , Rats , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenylpyridinium , Calcium/metabolism , Dopaminergic Neurons , Neuroblastoma/metabolism , Oxidation-Reduction , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Rats, Sprague-Dawley , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
6.
Neuropharmacology ; 229: 109480, 2023 05 15.
Article En | MEDLINE | ID: mdl-36868402

Gut dysbiosis has been closely linked to the onset and progression of several brain-related disorders such as depression. The administration of microbiota-based formulations such as probiotics helps restore healthy gut flora and plays a role in preventing and treating depression-like behavior. Therefore, we evaluated the efficacy of probiotic supplementation using our recently isolated putative probiotic Bifidobacterium breve Bif11 in ameliorating lipopolysaccharide (LPS)-induced depression-like behavior in male Swiss albino mice. Mice were fed orally with B. breve Bif11 (1 × 1010 CFU and 2 × 1010 CFU) for 21 days before being challenged with a single intraperitoneal LPS injection (0.83 mg/kg). Behavioral, biochemical, histological and molecular analysis were done with an emphasis on inflammatory pathways linked to depression-like behavior. Daily supplementation with B. breve Bif11 for 21 days prevented the onset of depression-like behavior induced by LPS injection, besides reducing the levels of inflammatory cytokines such as matrix metalloproteinase-2, c-reactive protein, interleukin-6, tumor necrosis factor-alpha and nuclear factor kappa-light-chain-enhancer of activated B cells. It also prevented the decrease of the brain-derived neurotrophic factor levels and neuronal cell viability in the prefrontal cortex of LPS-treated mice. Furthermore, we observed that gut permeability was reduced, there was an improved short-chain fatty acid profile and reduced gut dysbiosis in the LPS mice fed with B. breve Bif11. Similarly, we observed a decrease in behavioural deficits and restoration of gut permeability in chronic mild stress. Together, these results would help in deciphering the role of probiotics in the management of neurological disorders where depression, anxiety and inflammation are prominent clinical features.


Bifidobacterium breve , Mice , Male , Animals , Matrix Metalloproteinase 2 , Depression/therapy , Depression/metabolism , Lipopolysaccharides/toxicity , Dysbiosis , Dietary Supplements
7.
Enzyme Microb Technol ; 165: 110209, 2023 Apr.
Article En | MEDLINE | ID: mdl-36764031

Organophosphates (OPs) are highly neurotoxic compounds and certain OP-compounds are also exploited as a weapon of mass destruction and chemical warfare in terrorist attacks. Available prophylactic and post-exposure treatments are less effective and also have serious side-effects. Thus, there is a dire need to develop effective and safe prophylactic agent(s) against OP-poisoning. Human Paraoxonase 1 (hPON1) can hydrolyze a wide range of OP molecules and can be developed as an effective and safe prophylactic agent. Thus, there is a dire need in the art to develop variant(s) of rhPON1 that not only possess 'good' OP-hydrolyzing activity but also have improved pharmacokinetic properties. In this report, we describe the characterization of the fused hPON1 (FHP) variant that not only exhibit enhanced in vivo pharmacokinetic properties but also delay / prevent the symptoms of OP-poisoning and prevents OP-induced mortality in rats.


Aryldialkylphosphatase , Organophosphate Poisoning , Animals , Humans , Rats , Organophosphate Poisoning/prevention & control , Organophosphates
8.
Mitochondrion ; 69: 95-103, 2023 03.
Article En | MEDLINE | ID: mdl-36758857

Mitochondrial dysfunction is closely linked with the pathophysiology of several neurodegenerative disorders including Parkinson's disease (PD). Despite several therapeutic advancements related to symptomatic modification of PD pathology, strategies targeting mitochondrial dysfunctions remain largely elusive. Recently, transient receptor potential (TRP) channels have been shown to play a pivotal role in the control of mitochondrial and neuronal functioning in PD. In this study, the effect of 2-aminoethoxydiphenyl borate (2-APB), TRP channel blocker was investigated in the context of mitochondrial dysfunctions in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-administered Sprague Dawley rats. MPP+-treated SH-SY5Y cells exhibited reductions in cell viability, generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Co-treatment with 2-APB led to an increase in cell viability, reduction in intracellular and mitochondrial ROS and improvement in mitochondrial membrane potential compared to MPP+-treated SH-SY5Y cells. In addition, intranigral administration of MPTP led to a significant reduction in motor function in the rats. Fourteen days of 2-APB (3 and 10 mg/kg, i.p.) treatment improved behavioural parameters. MPTP-induced decrease in complex I activity and mitochondrial potential were also blocked by 2-APB in the mitochondria isolated from the brain regions i.e. midbrain and striatum. MPTP-induced decrease in tyrosine hydroxylase levels were also restored by 2-APB. Moreover, MPTP-induced reduction in proteins involved in mitochondrial biogenesis, viz. peroxisome proliferator-activated-receptor-gamma coactivator and mitochondrial transcription factor-A were increased after 2-APB treatment in vivo. In summary, 2-APB has a promising neuroprotective role in the MPP+/MPTP models of PD via targeting mitochondrial dysfunctions and biogenesis.


Neuroblastoma , Parkinson Disease , Humans , Rats , Animals , Mice , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Parkinson Disease/drug therapy , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Neuroblastoma/metabolism , Mitochondria/metabolism , Mice, Inbred C57BL , Cell Line, Tumor , Dopaminergic Neurons
9.
ACS Chem Neurosci ; 13(18): 2728-2742, 2022 09 21.
Article En | MEDLINE | ID: mdl-36094343

Transient receptor potential canonical 5 (TRPC5) channels are predominantly expressed in the striatum and substantia nigra of the brain. These channels are permeable to calcium ions and are activated by oxidative stress. The physiological involvement of TRPC5 channels in temperature and mechanical sensation is well documented; however, evidence for their involvement in the pathophysiology of neurodegenerative disorders like Parkinson's disease (PD) is sparse. Thus, in the present study, the role of TRPC5 channels and their associated downstream signaling was elucidated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+) model of PD. Bilateral intranigral administration of MPTP and 24 h MPP+ exposure were performed to induce PD in the Sprague-Dawley rats and SH-SY5Y cells, respectively. MPTP led to behavioral anomalies and TRPC5 overexpression accompanied by increased calcium influx, apoptosis, oxidative stress, and mitochondrial dysfunctions. In addition, tyrosine hydroxylase (TH) expression was significantly lower in the midbrain and substantia nigra compared to sham animals. Intraperitoneal administration of potent and selective TRPC5 inhibitor, HC070 (0.1 and 0.3 mg/kg) reversed the cognitive and motor deficits seen in MPTP-lesioned rats. It also restored the TH and TRPC5 expression both in the striatum and midbrain. Furthermore, in vitro and in vivo studies suggested improvements in mitochondrial health along with reduced oxidative stress, apoptosis, and calcium-mediated excitotoxicity. Together, these results showed that inhibition of TRPC5 channels plays a crucial part in the reversal of pathology in the MPTP/MPP+ model of Parkinson's disease.


MPTP Poisoning , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Transient Receptor Potential Channels , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Calcium/metabolism , Disease Models, Animal , Humans , MPTP Poisoning/drug therapy , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , TRPC Cation Channels , Tyrosine 3-Monooxygenase/metabolism
10.
Pharmacol Rep ; 74(5): 790-817, 2022 Oct.
Article En | MEDLINE | ID: mdl-36149598

Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Nervous System Diseases , Humans , Insulin , Lipoproteins/metabolism
11.
Curr Neurovasc Res ; 19(3): 293-302, 2022.
Article En | MEDLINE | ID: mdl-36043777

BACKGROUND: Chemotherapy-induced peripheral neuropathy is a debilitating pain syndrome produced as a side effect of antineoplastic drugs like paclitaxel. Despite efforts, the currently available therapeutics suffer from serious drawbacks like unwanted side effects and poor efficacy and provide only symptomatic relief. Hence, there is a need to find new therapeutic alternatives for the treatment of chemotherapy-induced peripheral neuropathy. OBJECTIVE: The objective of this study was to explore the protective potential of caffeic acid phenethyl ester in paclitaxel-induced neuropathic pain. METHODS: We examined the effects of caffeic acid phenethyl ester by administering paclitaxel (2 mg/kg, intraperitoneal) to female Sprague Dawley rats on four alternate days to induce neuropathic pain, followed by the administration of caffeic acid phenethyl ester (10 and 30 mg/kg, intraperitoneally). RESULTS: Rats that were administered paclitaxel showed a substantially diminished pain threshold and nerve functions after 28 days. A significantly increased protein expression of Wnt signalling protein (ß-catenin), inflammatory marker (matrix metalloproteinase 2) and a decrease in endogenous antioxidant (nuclear factor erythroid 2-related factor 2) levels were found in paclitaxel administered rats in comparison to the naïve control group. Caffeic acid phenethyl ester (10 and 30 mg/kg, intraperitoneal) showed improvements in behavioural and nerve function parameters along with reduced expression of ß-catenin, matrix metalloproteinase 2 and an increase in nuclear factor erythroid 2- related factor 2 protein expression. CONCLUSION: The present study suggests that caffeic acid phenethyl ester attenuates chemotherapyinduced peripheral neuropathy via inhibition of ß-catenin and matrix metalloproteinase 2 and increases nuclear factor erythroid 2-related factor 2 activation.


Antineoplastic Agents , Neuralgia , Female , Rats , Animals , Paclitaxel/toxicity , Matrix Metalloproteinase 2 , beta Catenin , Rats, Sprague-Dawley , Wnt Signaling Pathway , Neuralgia/chemically induced , Neuralgia/drug therapy
12.
Mol Neurobiol ; 59(3): 1528-1542, 2022 Mar.
Article En | MEDLINE | ID: mdl-34997907

Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson's disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.


Parkinson Disease , TRPM Cation Channels , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Neuroprotection , Oxidative Stress , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , TRPM Cation Channels/metabolism
13.
Curr Neurovasc Res ; 18(5): 497-507, 2021.
Article En | MEDLINE | ID: mdl-34923943

BACKGROUND: PPAR gamma co-activator 1α (PGC-1α) is known as the master regulator of mitochondrial biogenesis. It is also a co-activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and plays a role in preventing mitochondrial dysfunction in several neurodegenerative disorders, including Parkinson's disease (PD). Depletion in the levels of these proteins has been linked to oxidative stress, inflammation, and DNA damage, all of which are known to contribute to the pathogenesis of PD. OBJECTIVE: In the present study, combination therapy of PPARγ agonist (GW1929) and PGC-1α activator (alpha-lipoic acid) was employed to ameliorate cognitive deficits, oxidative stress, and inflammation associated with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. METHODS: PD was induced using a bilateral intranigral administration of MPTP in Sprague Dawley rats, and different parameters were evaluated. RESULTS: Our study showed that MPTP-induced PD rats exhibited an increase in oxidative stress and inflammation, leading to cognitive deficits. Furthermore, MPTP-induced PD rats also exhibited reduced mitochondrial biogenesis in comparison to control and sham animals. Intraperitoneal administration of GW 1929 and alpha-lipoic acid in doses lower than those earlier reported individually in literature led to an improvement in the cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and inflammation. In addition, an increase in mitochondrial biogenesis was also observed after the combination of these pharmacological agents. CONCLUSION: Our results provide a rationale for the development of agents targeting PPARγ and PGC-1α as potent therapeutics for the treatment of neurological diseases like PD.


PPAR gamma , Parkinson Disease , Animals , Cognition , Inflammation/drug therapy , Inflammation/metabolism , Mitochondria/metabolism , Oxidative Stress , PPAR gamma/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Rodentia/metabolism
14.
Curr Neuropharmacol ; 19(9): 1401-1415, 2021.
Article En | MEDLINE | ID: mdl-34102977

Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, traumatic brain injury (TBI), depression, and anxiety are responsible for thousands of deaths worldwide every year. With the increase in life expectancy, there has been a rise in the prevalence of these disorders. Age is one of the major risk factors for these neurological disorders, and with the aged population set to rise to 1.25 billion by 2050, there is a growing concern to look for new therapeutic molecules to treat age-related diseases. Caffeic acid phenethyl ester (CAPE) is a molecule obtained from a number of botanical sources, such as the bark of conifer trees as well as propolis which is extracted from beehives. Though CAPE remains relatively unexplored in human trials, it possesses antioxidant, anti-inflammatory, antimitogenic, and anti-cancer activities, as shown by preclinical studies. Apart from this, it also exhibits tremendous potential for the treatment of neurological disorders through the modulation of multiple molecular pathways and attenuation of behavioural deficits. In the present article, we have reviewed the therapeutic potential of CAPE and its mechanisms in the treatment of neurological disorders.


Caffeic Acids , Phenylethyl Alcohol , Aged , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Humans , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use
15.
Food Funct ; 12(10): 4284-4314, 2021 May 21.
Article En | MEDLINE | ID: mdl-33955443

The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.


Depression , Gastrointestinal Microbiome , Mental Health , Synbiotics , Animals , Disease Models, Animal , Humans , Prebiotics , Probiotics
16.
Eur J Pharmacol ; 895: 173862, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33450279

Parkinson's disease is a neurodegenerative disease which is associated with different motor, cognitive and mood-related problems. Though it has been established that Parkinson's disease is less prevalent in women in comparison to men, the differences tend to diminish with the advancing age. Different genetic, hormonal, neuroendocrinal and molecular players contribute towards the differences in the Parkinson's disease pathogenesis. Furthermore, data available with respect to the therapeutic management of Parkinson's disease in females is limited; women often tend to suffer more from the side effects of the currently available drugs. The present review highlights the sex-specific differences which play a role in the manifestation of these symptoms and side effects of the currently available therapeutic strategies. We have also discussed the current and upcoming therapeutic strategies which are in the clinical trials such as adenosine 2A (A2A) receptor antagonists, estrogen replacement therapy, α-synuclein targeting vaccines and antibodies, Botulinum toxin A, Fas-associated factor-1 (FAF-1) inhibitors, thiazolidinediones, 5-HT1A receptor agonists, dopamine D1/D5 receptor agonists, Glucagon-like peptide 1 (GLP-1) analogues and certain plant based principles for the treatment of Parkinson's disease in women.


Antiparkinson Agents/therapeutic use , Health Status Disparities , Motor Activity/drug effects , Parkinson Disease/drug therapy , Animals , Antiparkinson Agents/adverse effects , Estrogen Replacement Therapy , Female , Genetic Predisposition to Disease , Gonadal Steroid Hormones/metabolism , Humans , Male , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Phenotype , Prognosis , Risk Assessment , Risk Factors , Sex Factors
17.
Front Cell Dev Biol ; 8: 584513, 2020.
Article En | MEDLINE | ID: mdl-33330461

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the symptoms of motor deficits and cognitive decline. There are a number of therapeutics available for the treatment of PD, but most of them suffer from serious side effects such as bradykinesia, dyskinesia and on-off effect. Therefore, despite the availability of these pharmacological agents, PD patients continue to have an inferior quality of life. This has warranted a need to look for alternate strategies and molecular targets. Recent evidence suggests the Transient Receptor Potential (TRP) channels could be a potential target for the management of motor and non-motor symptoms of PD. Though still in the preclinical stages, agents targeting these channels have shown immense potential in the attenuation of behavioral deficits and signaling pathways. In addition, these channels are known to be involved in the regulation of ionic homeostasis, which is disrupted in PD. Moreover, activation or inhibition of many of the TRP channels by calcium and oxidative stress has also raised the possibility of their paramount involvement in affecting the other molecular mechanisms associated with PD pathology. However, due to the paucity of information available and lack of specificity, none of these agents have gone into clinical trials for PD treatment. Considering their interaction with oxidative stress, apoptosis and excitotoxicity, TRP channels could be considered as a potential future target for the treatment of PD.

18.
Pharmacol Res ; 159: 105026, 2020 09.
Article En | MEDLINE | ID: mdl-32562815

Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.


Central Nervous System Agents/therapeutic use , Central Nervous System Diseases/drug therapy , Central Nervous System/drug effects , Membrane Transport Modulators/therapeutic use , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Calcium Signaling , Central Nervous System/metabolism , Central Nervous System/physiopathology , Central Nervous System Agents/adverse effects , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/physiopathology , Humans , Membrane Transport Modulators/adverse effects , Oxidative Stress , Protein Folding , Reactive Oxygen Species/metabolism , Transient Receptor Potential Channels/metabolism
19.
eNeuro ; 6(6)2019.
Article En | MEDLINE | ID: mdl-31645362

Designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tools are extensively used to manipulate neuronal activity in a cell type-specific manner. Whole-cell patch-clamp recordings indicate membrane depolarization, coupled with increased neuronal firing rate, following administration of the DREADD ligand, clozapine-N-oxide (CNO) to activate the Gq-coupled DREADD, hM3Dq. Although hM3Dq has been used to enhance neuronal firing in order to manipulate diverse behaviors, often within 30 min to 1 h after CNO administration, the physiological effects on excitatory neurotransmission remain poorly understood. We investigated the influence of CNO-mediated hM3Dq DREADD activation on distinct aspects of hippocampal excitatory neurotransmission at the Schaffer collateral-CA1 synapse in hippocampal slices derived from mice expressing hM3Dq in Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons. Our results indicate a clear dose-dependent effect on field EPSP (fEPSP) slope, with no change noted at the lower dose of CNO (1 µM) and a significant, long-term decline in fEPSP slope observed at higher doses (5-20 µM). Further, we noted a robust θ burst stimulus (TBS) induced long-term potentiation (LTP) in the presence of the lower CNO (1 µM) dose, which was significantly attenuated at the higher CNO (20 µM) dose. Whole-cell patch-clamp recording revealed both complex dose-dependent regulation of excitability, and spontaneous and evoked activity of CA1 pyramidal neurons in response to hM3Dq activation across CNO concentrations. Our data indicate that CNO-mediated activation of the hM3Dq DREADD results in dose-dependent regulation of excitatory hippocampal neurotransmission and highlight the importance of careful interpretation of behavioral experiments involving chemogenetic manipulation.


Hippocampus/drug effects , Neurons/drug effects , Synaptic Transmission/drug effects , Animals , Cells, Cultured , Designer Drugs/pharmacology , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Mice , Mice, Transgenic , Neurons/physiology , Patch-Clamp Techniques , Synaptic Transmission/physiology
20.
Open Biol ; 9(6): 180265, 2019 06 28.
Article En | MEDLINE | ID: mdl-31185809

Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.


Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Intellectual Disability/genetics , Intellectual Disability/psychology , Mutation , Animals , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Genetic Predisposition to Disease , Humans , Methyl-CpG-Binding Protein 2/genetics , Mice , Nerve Tissue Proteins/genetics , ras GTPase-Activating Proteins/genetics
...