Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Transl Med ; 14(655): eabn3041, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35679357

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
2.
Cell Rep ; 39(7): 110812, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35568025

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Epitopes , Humans
3.
bioRxiv ; 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-33972947

ABSTRACT

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.

4.
Front Immunol ; 12: 790469, 2021.
Article in English | MEDLINE | ID: mdl-34956222

ABSTRACT

Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically efficacious when administered early, decreasing hospitalization and mortality in patients with mild or moderate COVID-19. We investigated the effects of receiving mAbs (bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2 infection on the endogenous immune response. Methods: Longitudinal serum samples were collected from patients with mild or moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800 mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus neutralization assays were performed. Results: The antibody response in patients who received placebo or mAbs had a broad specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP) epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load correlated with the subsequent antibody titers of the native, unmodified humoral response (p<0.0001 at Day 15, 29, 60 and 85 for full-length spike). Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and neutralizing activity, potentially due to a decrease in viral load following mAb treatment, suggest minimal impact of mAb treatment on the endogenous immune response.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , COVID-19 Drug Treatment , COVID-19/immunology , Adult , Antibodies, Neutralizing/immunology , Antiviral Agents/therapeutic use , Drug Combinations , Female , Humans , Male , Middle Aged , SARS-CoV-2
5.
Cancers (Basel) ; 13(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804482

ABSTRACT

CD200/CD200R is an immune checkpoint with broad expression patterns and a potential target for immune therapy. In this study, we assess both CD200 and CD200R expression in solid tumors, with a focus on lung cancer, and evaluate their association with clinicopathologic characteristics, mutation status, outcome, and programmed death-ligand 1 (PD-L1) expression. We used multiplexed quantitative immunofluorescence (QIF) to measure the expression of CD200 and CD200R in a total of 455 patients from three lung cancer cohorts. Using carefully validated antibodies, we performed target measurement with tyramide-based QIF panels and analyzed the data using the PM2000 microscope and AQUA software. CD200 tumor positivity was found in 29.7% of non-small cell lung cancer (NSCLC) patients and 33.3% of lung large cell neuroendocrine carcinoma (LCNEC) patients. CD200 demonstrated notable intratumoral heterogeneity. CD200R was expressed in immune cells in 25% of NSCLC and 41.3% of LCNEC patients. While CD200R is predominantly expressed in immune cells, rare tumor cell staining was seen in a highly heterogeneous pattern. CD200R expression in the stromal compartment was significantly higher in patients with squamous differentiation (p < 0.0001). Neither CD200 nor CD200R were associated with other clinicopathologic characteristics or mutation status. Both biomarkers were not prognostic for disease-free or overall survival in NSCLC. CD200 showed moderate correlation with PD-L1. CD200/CD200R pathway is frequently expressed in lung cancer patients. Differential expression patterns of CD200 and CD200R with PD-L1 suggest a potential role for targeting this pathway alone in patients with NSCLC.

6.
PLoS One ; 11(3): e0150585, 2016.
Article in English | MEDLINE | ID: mdl-26954567

ABSTRACT

SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin's lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Hematologic Neoplasms/metabolism , Receptors, CXCR4/antagonists & inhibitors , Animals , Annexin A5/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CXCL12/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/mortality , Hematologic Neoplasms/pathology , Humans , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Clin Cancer Res ; 20(23): 6059-70, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25231402

ABSTRACT

PURPOSE: MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms. EXPERIMENTAL DESIGN/RESULTS: Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGF-dependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGF-responsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875358 blocks HGF binding to MET and HGF-induced MET phosphorylation and cell proliferation. In contrast to the humanized one-armed 5D5 anti-MET antibody, LY2875358 induces internalization and degradation of MET that inhibits cell proliferation and tumor growth in models where MET is constitutively activated. Moreover, LY2875358 has potent antitumor activity in both HGF-dependent and HGF-independent (MET-amplified) xenograft tumor models. Together, these findings indicate that the mechanism of action of LY2875358 is different from that of the one-armed MET antibody. CONCLUSIONS: LY2875358 may provide a promising therapeutic strategy for patients whose tumors are driven by both HGF-dependent and HGF-independent MET activation. LY2875358 is currently being investigated in multiple clinical studies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Hepatocyte Growth Factor/metabolism , Neoplasms/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation , Enzyme Activation/drug effects , Female , Humans , Macaca fascicularis , Male , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation , Protein Transport , Proteolysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
8.
Histopathology ; 65(6): 879-96, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25039923

ABSTRACT

AIMS: Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method. METHODS AND RESULTS: Excellent antibody specificity was demonstrated by immunoblot, ELISA, and IHC evaluation of characterised cell lines including NIH3T3 overexpressing the related kinase MST1R (RON). Sensitivity was confirmed by measurements of MET in cell lines or characterised tissues. IHC correlated well with FISH and quantitative RT-PCR assessments of MET (P < 0.001). Good total agreement (89%) was observed with the anti-MET antibody clone SP44 using whole-tissue sections, but poor positive agreement (21-47%) was seen in tissue microarray cores. Multiple lots displayed appropriate reproducibility (R(2)  > 0.9). Prevalence of MET positivity by IHC was higher in non-squamous cell NSCLC, MET or EGFR amplified cases, and in tumours harbouring abnormalities in EGFR exon 19 or 21. CONCLUSIONS: The anti-MET antibody clone A2H2-3 displays excellent specificity and sensitivity. These properties make it suitable for clinical trial investigations and development as a potential companion diagnostic.


Subject(s)
Antibodies, Monoclonal , Neoplasms/genetics , Proto-Oncogene Proteins c-met/analysis , Adult , Aged , Animals , Antibody Specificity , Blotting, Western , DNA Mutational Analysis , Female , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Mice , Middle Aged , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Tissue Array Analysis
9.
MAbs ; 4(3): 310-8, 2012.
Article in English | MEDLINE | ID: mdl-22531445

ABSTRACT

Humanized monoclonal antibodies (mAbs) are the fastest growing class of biological therapeutics that are being developed for various medical indications, and more than 30 mAbs are already approved and in the market place. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of several therapeutic antibodies, particularly oncology targeting mAbs. The ADCC assay is a complicated and highly variable assay. Thus, the use of an ADCC assay as a lot release test or a stability test for clinical trial batches of mAbs has been a substantial challenge to install in quality control laboratories. We describe here the development and validation of an alternate approach, an ADCC-reporter gene assay that is based on the key attributes of the PBMC-based ADCC assay. We tested the biological relevance of this assay using an anti-CD20 based model and demonstrated that this ADCC-reporter assay correlated well with standard ADCC assays when induced with the drugable human isotypes [IgG1, IgG2, IgG4, IgG4S > P (S228P) and IgG4PAA (S228P, F234A, L235A)] and with IgG1 isotype variants with varying amounts of fucosylation. This data demonstrates that the ADCC-reporter gene assay has performance characteristics (accuracy, precision and robustness) to be used not only as a potency assay for lot release and stability testing for antibody therapeutics, but also as a key assay for the characterization and process development of therapeutic molecules.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibody-Dependent Cell Cytotoxicity/genetics , Cytotoxicity Tests, Immunologic , Genes, Reporter , Antigens, CD20/immunology , Feasibility Studies , Humans , Leukocytes, Mononuclear/immunology , Observer Variation , Quality Control , Reproducibility of Results
10.
Biotechnol Prog ; 19(6): 1750-5, 2003.
Article in English | MEDLINE | ID: mdl-14656151

ABSTRACT

We describe a set of Moloney Murine Leukemia Virus (MoMLV)-based replication-defective retroviral vectors for delivery of the ecdysone-inducible system into mammalian cells. The vector pFB-ERV contains a tricistronic CMV expression cassette from which the ecdysone receptor proteins RXR and VgEcR are expressed, with the neo-resistance marker expressed as the third open reading frame (ORF). The inducible vector pCFB-EGSH contains an ecdysone-inducible expression cassette inserted between the viral LTRs in the antisense orientation relative to that for the viral promoter. Potential interference from the proviral 5' LTR is obviated due to a SIN deletion in the 3' LTR. When used together, induction ratios of over 1000-fold were achieved in NIH3T3 cells using firefly luciferase as a reporter.


Subject(s)
Ecdysone/biosynthesis , Ecdysone/genetics , Gene Targeting/methods , Genetic Engineering/methods , Kidney/metabolism , Moloney murine leukemia virus/genetics , Transfection/methods , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Gene Expression Regulation/genetics , Humans , Kidney/embryology , Recombinant Proteins/biosynthesis
11.
Mol Biotechnol ; 22(1): 25-32, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12353912

ABSTRACT

Retroviral cDNA expression libraries allow the efficient introduction of complex cDNA libraries into virtually any mitotic cell type for screening based on gene function. The cDNA copy number per cell can be easily controlled by adjusting the multiplicity of infection, thus cell populations may be generated in which >90% of infected cells contain one to three cDNAs. We describe the isolation of two known oncogenes and one cell-surface receptor from a human Burkitt's lymphoma (Daudi) cDNA library inserted into the high-titer retroviral vector pFB.


Subject(s)
Cell Cycle Proteins , Cloning, Molecular/methods , DNA, Complementary/metabolism , Gene Expression Profiling/methods , Gene Library , Genetic Vectors , Retroviridae/genetics , Retroviridae/metabolism , 3T3 Cells/metabolism , Animals , Base Sequence , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Gene Expression Regulation , Humans , Mice , Molecular Sequence Data , Oncogenes/genetics , Proto-Oncogene Proteins/analysis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-raf/analysis , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-vav , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Restriction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...