Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 22(1): 259, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902652

ABSTRACT

BACKGROUND: IMCY-0098, a synthetic peptide developed to halt disease progression via elimination of key immune cells in the autoimmune cascade, has shown a promising safety profile for the treatment of type 1 diabetes (T1D) in a recent phase 1b trial. This exploratory analysis of data from that trial aimed to identify the patient biomarkers at baseline associated with a positive response to treatment and examined the associations between immune response parameters and clinical efficacy endpoints (as surrogates for mechanism of action endpoints) using an artificial intelligence-based approach of unsupervised explainable machine learning. METHODS: We conducted an exploratory analysis of data from a phase 1b, dose-escalation, randomized, placebo-controlled study of IMCY-0098 in patients with recent-onset T1D. Here, a panel of markers of T cell activation, memory T cells, and effector T cell response were analyzed via descriptive statistics. Artificial intelligence-based analyses of associations between all variables, including immune responses and clinical responses, were performed using the Knowledge Extraction and Management (KEM®) v 3.6.2 analytical platform. RESULTS: The relationship between all available patient data was investigated using unsupervised machine learning implemented in the KEM® environment. Of 15 associations found for the dose C group (450 µg subcutaneously followed by 3 × 225 µg subcutaneously), seven involved human leukocyte antigen (HLA) type, all of which identified improvement/absence of worsening of disease parameters in DR4+ patients and worsening/absence of improvement in DR4- patients. This association with DR4+ and non-DR3 was confirmed using the endpoints normalized area under the curve C-peptide from mixed meal tolerance tests where presence of DR4 HLA haplotype was associated with an improvement in both endpoints. Exploratory immune analysis showed that IMCY-0098 dose B (150 µg subcutaneously followed by 3 × 75 µg subcutaneously) and dose C led to an increase in presumed/potentially protective antigen-specific cytolytic CD4+ T cells and a decrease in pathogenic CD8+ T cells, consistent with the expected mechanism of action of IMCY-0098. The analysis identified significant associations between immune and clinical responses to IMCY-0098. CONCLUSIONS: Promising preliminary efficacy results support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. TRIAL REGISTRATION: ClinicalTrials.gov NCT03272269; EudraCT: 2016-003514-27.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Double-Blind Method , Male , Female , Adult , Immunotherapy/methods , Young Adult , Adolescent , Treatment Outcome , Peptides/administration & dosage , Peptides/therapeutic use , Middle Aged
2.
BMC Med ; 21(1): 190, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226224

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease characterized by the destruction of insulin-producing pancreatic ß-cells by CD8+ T cells. Achieving glycemic targets in T1D remains challenging in clinical practice; new treatments aim to halt autoimmunity and prolong ß-cell survival. IMCY-0098 is a peptide derived from human proinsulin that contains a thiol-disulfide oxidoreductase motif at the N-terminus and was developed to halt disease progression by promoting the specific elimination of pathogenic T cells. METHODS: This first-in-human, 24-week, double-blind phase 1b study evaluated the safety of three dosages of IMCY-0098 in adults diagnosed with T1D < 6 months before study start. Forty-one participants were randomized to receive four bi-weekly injections of placebo or increasing doses of IMCY-0098 (dose groups A/B/C received 50/150/450 µg for priming followed by three further administrations of 25/75/225 µg, respectively). Multiple T1D-related clinical parameters were also assessed to monitor disease progression and inform future development. Long-term follow-up to 48 weeks was also conducted in a subset of patients. RESULTS: Treatment with IMCY-0098 was well tolerated with no systemic reactions; a total of 315 adverse events (AEs) were reported in 40 patients (97.6%) and were related to study treatment in 29 patients (68.3%). AEs were generally mild; no AE led to discontinuation of the study or death. No significant decline in C-peptide was noted from baseline to Week 24 for dose A, B, C, or placebo (mean change - 0.108, - 0.041, - 0.040, and - 0.012, respectively), suggesting no disease progression. CONCLUSIONS: Promising safety profile and preliminary clinical response data support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. TRIAL REGISTRATION: IMCY-T1D-001: ClinicalTrials.gov NCT03272269; EudraCT: 2016-003514-27; and IMCY-T1D-002: ClinicalTrials.gov NCT04190693; EudraCT: 2018-003728-35.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Humans , Diabetes Mellitus, Type 1/drug therapy , CD8-Positive T-Lymphocytes , Immunotherapy , C-Peptide , Autoimmunity , Disease Progression
3.
J Biol Chem ; 278(38): 36531-6, 2003 Sep 19.
Article in English | MEDLINE | ID: mdl-12807902

ABSTRACT

Vasoactive intestinal peptide (VIP) is a prominent neuropeptide whose actions are mediated by VPAC receptors belonging to class II G protein-coupled receptors. To identify contact sites between VIP and its VPAC1 receptor, an analog of VIP substituted with a photoreactive para-benzoyl-l-Phe (Bpa) at position 22 has been synthesized and evaluated in Chinese hamster ovary cells stably expressing the recombinant human receptor. Bpa22-VIP and native VIP are equipotent in stimulating adenylyl cyclase activity in cell membranes. Cyanogen bromide cleavage of the covalent 125I-[Bpa22-VIP]-hVPAC1R complex yielded a single labeled fragment of 30 kDa that shifted to 11 after deglycosylation, most consistent with the 67-137 fragment of the receptor N-terminal ectodomain. Further cleavage of this fragment with V8 endoproteinase and creation of receptor mutants with new CNBr cleavage sites (XàMet), demonstrated that 125I-[Bpa22-VIP] was covalently attached to the short receptor 109-120 fragment (GWTHLEPGPYPI). In a three-dimensional model of the receptor N-terminal ectodomain, this fragment is located on one edge of the putative VIP binding groove and encompasses several amino acids previously shown to be crucial for VIP binding (reviewed in Laburthe, M., Couvineau, A., and Marie, J. C. (2002) Receptors Channels 8, 137-153). Our data provide the first direct evidence for a physical contact between VIP and the N-terminal ectodomain of the hVPAC1 receptor.


Subject(s)
Photoaffinity Labels/pharmacology , Receptors, Vasoactive Intestinal Peptide/chemistry , Vasoactive Intestinal Peptide/chemistry , Amino Acid Sequence , Animals , Binding, Competitive , CHO Cells , Cricetinae , Cyanogen Bromide/pharmacology , Electrophoresis, Polyacrylamide Gel , Glycosylation , Humans , Kinetics , Ligands , Light , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Receptors, Vasoactive Intestinal Polypeptide, Type I , Recombinant Fusion Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...