Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Drug Alcohol Depend ; 227: 108910, 2021 10 01.
Article En | MEDLINE | ID: mdl-34332176

The α-pyrrolidino-phenone cathinone stimulants first came to widespread attention because of bizarre behavior consequent to the use of α-pyrrolidinopentiophenone (α-PVP, "flakka") reported in popular press. As with other designer drugs, diversification of cathinones has been driven by desirable subjective effects, but also by attempts to stay ahead of legal controls of specific molecules. The α-pyrrolidinohexiophenone (α-PHP) and α-pyrrolidinopropiophenone (α-PPP) compounds have been relatively under-investigated relative to α-PVP and provide a key opportunity to also investigate structure-activity relationships, i.e., how the extension of the alpha carbon chain may affect potency or efficacy. Female rats were used to contrast the effects of α-PHP and α-PPP with those of α-PVP in altering wheel activity and effects on spontaneous locomotion, temperature and intracranial self-stimulation reward. The α-PPP, α-PHP and α-PVP compounds (5, 10 mg/kg, i.p.) suppressed wheel activity. Inhalation of α-PHP or α-PVP also suppressed wheel activity, but for an abbreviated duration compared with the injection route. Spontaneous activity was increased, and brain reward thresholds decreased, in a dose-dependent manner by all three compounds; only small decrements in body temperature were observed. These data show that all three of the α-pyrrolidino-phenone cathinones exhibit significant stimulant-like activity in female rats. Differences were minor and abuse liability is therefore likely to be equivalent for all three α-pyrrolidino-phenones.


Alkaloids , Central Nervous System Stimulants , Designer Drugs , Alkaloids/pharmacology , Animals , Central Nervous System Stimulants/pharmacology , Designer Drugs/pharmacology , Dose-Response Relationship, Drug , Female , Locomotion , Pyrrolidines/pharmacology , Rats
2.
Front Behav Neurosci ; 15: 780500, 2021.
Article En | MEDLINE | ID: mdl-34975428

Male rats escalate intravenous self-administration of entactogen psychostimulants, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxymethamphetamine (MDMA) under extended access conditions, as with typical psychostimulants. Here, we investigated whether female rats escalate self-administration of methylone, 3,4-methylenedioxypentedrone (pentylone), and MDMA and then studied consequences of MDMA and pentylone self-administration on GABAA receptor and kappa opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA), a brain area critically dysregulated by extended access self-administration of alcohol or cocaine. Adult female Wistar rats were trained to self-administer methylone, pentylone, MDMA (0.5 mg/kg/infusion), or saline-vehicle using a fixed-ratio 1 response contingency in 6-h sessions (long-access: LgA) followed by progressive ratio (PR) dose-response testing. The effects of pentylone-LgA, MDMA-LgA and saline on basal GABAergic transmission (miniature post-synaptic inhibitory currents, mIPSCs) and the modulatory role of KOR at CeA GABAergic synapses were determined in acute brain slices using whole-cell patch-clamp. Methylone-LgA and pentylone-LgA rats similarly escalated their drug intake (both obtained more infusions compared to MDMA-LgA rats), however, pentylone-LgA rats reached higher breakpoints in PR tests. At the cellular level, baseline CeA GABA transmission was markedly elevated in pentylone-LgA and MDMA-LgA rats compared to saline-vehicle. Specifically, pentylone-LgA was associated with increased CeA mIPSC frequency (GABA release) and amplitude (post-synaptic GABAA receptor function), while mIPSC amplitudes (but not frequency) was larger in MDMA-LgA rats compared to saline rats. In addition, pentylone-LgA and MDMA-LgA profoundly disrupted CeA KOR signaling such as both KOR agonism (1 mM U50488) and KOR antagonism (200 nM nor-binaltorphimine) decreased mIPSC frequency suggesting recruitment of non-canonical KOR signaling pathways. This study confirms escalated self-administration of entactogen psychostimulants under LgA conditions in female rats which is accompanied by increased CeA GABAergic inhibition and altered KOR signaling. Collectively, our study suggests that CeA GABA and KOR mechanisms play a critical role in entactogen self-administration like those observed with escalation of alcohol or cocaine self-administration.

3.
Exp Clin Psychopharmacol ; 29(1): 1-13, 2021 Feb.
Article En | MEDLINE | ID: mdl-32297788

An inhalation system based on e-cigarette technology produces hypothermic and antinociceptive effects of Δ9-tetrahydrocannabinol (THC) in rats. Indirect comparison of some prior investigations suggested differential impact of inhaled THC between Wistar (WI) and Sprague-Dawley (SD) rats; thus, this study was conducted to directly compare the strains across inhaled and injected routes of administration. Groups (N = 8 per strain) of age-matched male SD and WI rats were prepared with radiotelemetry devices to measure temperature and then exposed to vapor from the propylene glycol (PG) vehicle or THC (25-200 mg/mL of PG) for 30 or 40 min. Additional studies evaluated effects of THC inhalation on plasma THC (50-200 mg/mL) and nociception (100-200 mg/mL) as well as the thermoregulatory effect of intraperitoneal injection of THC (5-30 mg/kg). Hypothermic effects of THC were more pronounced in SD rats, where plasma levels of THC were identical across strains, under either fixed inhalation conditions or injection of a mg/kg equivalent dose. Strain differences in hypothermia were largest after i.p. injection of THC, with SD rats exhibiting dose-dependent temperature reduction after 5 or 10 mg/kg, i.p. and the WI rats only exhibiting significant hypothermia after 20 mg/kg, i.p. The antinociceptive effects of inhaled THC (100, 200 mg/mL) did not differ significantly across the strains. These studies confirm an insensitivity of WI rats, compared with SD rats, to hypothermia induced by THC following inhalation conditions that produced identical plasma THC and antinociception. Thus, quantitative, albeit not qualitative, strain differences may be obtained when studying thermoregulatory effects of THC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Body Temperature Regulation/drug effects , Dronabinol/administration & dosage , Electronic Nicotine Delivery Systems , Hallucinogens/administration & dosage , Hypothermia/chemically induced , Locomotion/drug effects , Administration, Inhalation , Animals , Body Temperature Regulation/physiology , Dronabinol/toxicity , Hallucinogens/toxicity , Hypothermia/physiopathology , Injections, Intraperitoneal , Locomotion/physiology , Male , Nociception/drug effects , Nociception/physiology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Species Specificity
4.
Drug Alcohol Depend ; 214: 108166, 2020 09 01.
Article En | MEDLINE | ID: mdl-32717503

The use of Δ9-tetrahydrocannabinol (THC) by inhalation using e-cigarette technology grows increasingly popular for medical and recreational purposes. This has led to development of e-cigarette based techniques to study the delivery of THC by inhalation in laboratory rodents. Inhaled THC reliably produces hypothermic and antinociceptive effects in rats, similar to effects of parenteral injection of THC. This study was conducted to determine the extent to which the hypothermic response depends on interactions with the CB1 receptor, using pharmacological antagonist (SR141716, AM-251) approaches. Groups of rats were implanted with radiotelemetry devices capable of reporting activity and body temperature, which were assessed after THC inhalation or injection. SR141716 (4 mg/kg, i.p.) blocked or attenuated antinociceptive effects of acute THC inhalation in male and female rats. SR141716 was unable to block the initial hypothermia caused by THC inhalation, but temperature was restored to normal more quickly. Alterations in antagonist pre-treatment time, dose and the use of a rat strain with less sensitivity to THC-induced hypothermia did not change this pattern. Pre-treatment with SR141716 (4 mg/kg, i.p.) blocked hypothermia induced by i.v. THC and reversed hypothermia when administered 45 or 90 min after THC (i.p.). SR141716 and AM-251 (4 mg/kg, i.p.) sped recovery from, but did not block, hypothermia caused by vapor THC in female rats made tolerant by prior repeated THC vapor inhalation. The CB2 antagonist AM-630, had no effect. These results suggest that hypothermia consequent to THC inhalation is induced by other mechanisms in addition to CB1 receptor activation.


Dronabinol/pharmacology , Electronic Nicotine Delivery Systems , Hypothermia/chemically induced , Receptor, Cannabinoid, CB1/metabolism , Administration, Inhalation , Animals , Body Temperature/drug effects , Dose-Response Relationship, Drug , Dronabinol/administration & dosage , Female , Injections , Male , Rats , Rimonabant/pharmacology
5.
Neuropharmacology ; 151: 127-135, 2019 06.
Article En | MEDLINE | ID: mdl-30980837

Growing nonmedical use of prescription opioids is a global problem, motivating research on ways to reduce use and combat addiction. Medical cannabis ("medical marijuana") legalization has been associated epidemiologically with reduced opioid harms and cannabinoids have been shown to modulate effects of opioids in animal models. This study was conducted to determine if Δ9-tetrahydrocannabinol (THC) enhances the behavioral effects of oxycodone. Male rats were trained to intravenously self-administer (IVSA) oxycodone (0.15 mg/kg/infusion) during 1 h, 4 h or 8 h sessions. Following acquisition rats were exposed to THC by vapor inhalation (1 h and 8 h groups) or injection (0-10 mg/kg, i.p.; all groups) prior to IVSA sessions. Fewer oxycodone infusions were obtained by rats following vaporized or injected THC compared with vehicle treatment prior to the session. Follow-up studies demonstrated parallel dose-dependent effects of THC, i.p., on self-administration of different per-infusion doses of oxycodone and a preserved loading dose early in the session. These patterns are inconsistent with behavioral suppression. Additional groups of male and female Wistar rats were assessed for nociception following inhalation of vaporized THC (50 mg/mL), oxycodone (100 mg/mL) or the combination. Tail withdrawal latency was increased more by the THC/oxycodone combination compared to either drug alone. Similar additive antinociceptive effects were produced by injection of THC (5.0 mg/kg, i.p.) and oxycodone (2.0 mg/kg, s.c.). Together these data demonstrate additive effects of THC and oxycodone and suggest the potential use of THC to enhance therapeutic efficacy, and to reduce the abuse, of opioids.


Analgesics, Opioid/administration & dosage , Cannabinoids/pharmacology , Dronabinol/pharmacology , Nociception/drug effects , Oxycodone/administration & dosage , Animals , Female , Male , Pain Threshold/drug effects , Rats , Rats, Wistar , Self Administration
6.
Psychopharmacology (Berl) ; 235(9): 2541-2557, 2018 Sep.
Article En | MEDLINE | ID: mdl-29907926

RATIONALE: Previous studies report sex differences in some, but not all, responses to cannabinoids in rats. The majority of studies use parenteral injection; however, most human use is via smoke inhalation and, increasingly, vapor inhalation. OBJECTIVES: To compare thermoregulatory and locomotor responses to inhaled ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination using an e-cigarette-based model in male and female rats METHODS: Male and female Wistar rats were implanted with radiotelemetry devices for the assessment of body temperature and locomotor activity. Animals were then exposed to THC or CBD vapor using a propylene glycol (PG) vehicle. THC dose was adjusted via the concentration in the vehicle (12.5-200 mg/mL) and the CBD (100, 400 mg/mL) dose was also adjusted by varying the inhalation duration (10-40 min). Anti-nociception was evaluated using a tail-withdrawal assay following vapor inhalation. Plasma samples obtained following inhalation in different groups of rats were compared for THC content. RESULTS: THC inhalation reduced body temperature and increased tail-withdrawal latency in both sexes equivalently and in a concentration-dependent manner. Female temperature, activity, and tail-withdrawal responses to THC did not differ between estrus and diestrus. CBD inhalation alone induced modest hypothermia and suppressed locomotor activity in both males and females. Co-administration of THC with CBD, in a 1:4 ratio, significantly decreased temperature and activity in an approximately additive manner and to similar extent in each sex. Plasma THC varied with the concentration in the PG vehicle but did not differ across rat sex. CONCLUSION: In summary, the inhalation of THC or CBD, alone and in combination, produces approximately equivalent effects in male and female rats. This confirms the efficacy of the e-cigarette-based method of THC delivery in female rats.


Body Temperature/drug effects , Cannabidiol/pharmacology , Dronabinol/pharmacology , Locomotion/drug effects , Administration, Inhalation , Animals , Cannabidiol/administration & dosage , Disease Models, Animal , Dronabinol/administration & dosage , Dronabinol/blood , Electronic Nicotine Delivery Systems , Female , Hypothermia/chemically induced , Male , Nociception/drug effects , Rats , Rats, Wistar
7.
Psychopharmacology (Berl) ; 235(8): 2447-2457, 2018 Aug.
Article En | MEDLINE | ID: mdl-29909425

RATIONALE: The synthetic cathinone α-pyrrolidinopentiophenone (α-PVP) has been associated with bizarre public behavior in users. Association of such behavior with extended binges of drug use motivates additional investigation, particularly since a prior study found that half of male rats experience a binge of exceptionally high intake, followed by sustained lower levels of self-administration during the acquisition of intravenous self-administration (IVSA) of a related drug, 3,4-methylenedioxypyrovalerone. OBJECTIVES: The binge-like acquisition pattern is novel for rat IVSA; thus, the present study sought to determine if this effect generalizes to IVSA of α-PVP in female rats. METHODS: Female Wistar rats were trained in IVSA of α-PVP (0.05 mg/kg/inf) in experimental chambers containing an activity wheel. Groups were trained with the wheels fixed (No-Wheel group), fixed for the initial 5 days of acquisition or free to move throughout acquisition (Wheel group). The groups were next subjected to a wheel access switch and then all animals to dose-substitution (0.0125-0.3 mg/kg/inf) with the wheels alternately fixed and free to move. RESULTS: Approximately half of the rats initiated their IVSA pattern with a binge day of exceptionally high levels of drug intake, independent of wheel access condition. Wheel activity was much lower in the No-Wheel group in the wheel switch post-acquisition. Dose-effect curves were similar for wheel access training groups, for binge/no binge phenotypic subgroups and were not altered with wheel access during the dose-substitution. CONCLUSION: This confirms the high reinforcer effectiveness of α-PVP in female rats and the accompanying devaluation of wheel activity as a naturalistic reward.


Behavior, Addictive/psychology , Locomotion/drug effects , Pentanones/administration & dosage , Pyrrolidines/administration & dosage , Reward , Administration, Intravenous , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Female , Infusions, Intravenous , Locomotion/physiology , Motivation/drug effects , Motivation/physiology , Rats , Rats, Wistar , Self Administration
8.
Neuropsychopharmacology ; 43(4): 801-809, 2018 03.
Article En | MEDLINE | ID: mdl-28812595

Opioid misuse is at historically high levels in the United States, with inhalation (ie, smoking and vaping) being one of the most common routes of consumption. We developed and validated a novel preclinical model of opioid self-administration by inhalation that does not require surgery and reliably produces somatic and motivational signs of dependence. Rats were trained to perform an operant response (nosepoke) to receive 10 s of vaporized sufentanil, a potent opioid, in 2 h daily sessions. Rats readily and concentration-dependently self-administered vaporized sufentanil. Rats exhibited a significant increase in responding for sufentanil when given the preferential µ-opioid receptor inverse agonist naloxone, suggesting the participation of µ-opioid receptors in the reinforcing properties of sufentanil vapor. Serum sufentanil concentrations significantly correlated with the number of sufentanil vapor deliveries. Rats that were given long access (LgA; 12 h/day) but not short access (ShA; 1 h/day) to vaporized sufentanil escalated their drug intake over time and exhibited both naloxone-precipitated somatic signs of opioid withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. After 6 months of forced drug abstinence, LgA rats returned to pre-escalation baseline levels of responding for sufentanil and mechanical sensitivity. Upon subsequent re-escalation (ie, after the return to extended access to sufentanil vapor), LgA rats again developed naloxone-precipitated somatic signs of withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. These findings demonstrate that the operant sufentanil vapor self-administration model has both face and construct validity and therefore will be useful for investigating the neurobiological basis of opioid addiction.


Analgesics, Opioid/administration & dosage , Compulsive Behavior/chemically induced , Compulsive Behavior/psychology , Conditioning, Operant/drug effects , Sufentanil/administration & dosage , Administration, Inhalation , Analgesics, Opioid/adverse effects , Animals , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Male , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Rats, Wistar , Self Administration , Sufentanil/adverse effects , Volatilization
9.
Neuropharmacology ; 134(Pt A): 57-64, 2018 05 15.
Article En | MEDLINE | ID: mdl-28882561

The broad diversity of synthetic cathinone psychostimulant drugs that are available to users complicates research efforts to provide understanding of health risks. Second generation cathinones pentedrone and pentylone are distinguished from each other by the 3,4-methylenedioxy structural motif (which distinguishes methamphetamine from 3,4-methylenedioxymethamphetamine) and each incorporates the α-alkyl chain motif contained in the transporter-inhibitor cathinones (3,4-methylenedioxypyrovalerone (MDPV), α-pyrrolidinopentiophenone (α-PVP)) but not in the monoamine releasers (mephedrone, methylone). Studies were conducted in male and female Wistar rats to compare locomotor and thermoregulatory effects of pentedrone, pentylone and methylone using an implanted radiotelemetry system. Reinforcing effects were assessed in female Wistar rats trained in the intravenous self-administration (IVSA) procedure and subjected to dose-substitution (0.025-0.3 m/gkg/inf) under a fixed-ratio 1 response contingency. Pentedrone, pentylone and methylone dose-effect curves were contrasted with those for α-PVP and α-pyrrolidinohexiophenone (α-PHP). Dose dependent increases in locomotion were observed after intraperitoneal injection of pentylone (0.5-10.0 mg/kg), pentedrone (0.5-10.0 mg/kg) or mephedrone (0.5-10.0 mg/kg) in male and female rats. The maximum locomotor effect was similar across drugs but lasted longest after pentedrone. Mean body temperature did not vary systematically more than 0.5 °C after pentedrone or pentylone in either sex. A sustained hyperthermia (0.4-0.8 °C) was observed for four hours after 10.0 mg/kg methylone in male rats. More infusions of pentedrone or pentylone were self-administered compared with methylone, but all three were less potent than α-PVP or α-PHP. These studies support the inference that second generation cathinones pentylone and pentedrone have abuse liability greater than that of methylone. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Central Nervous System Stimulants/administration & dosage , Locomotion/drug effects , Reinforcement, Psychology , Amphetamines/administration & dosage , Amphetamines/chemistry , Animals , Body Temperature/drug effects , Central Nervous System Stimulants/chemistry , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Female , Male , Methamphetamine/administration & dosage , Methamphetamine/analogs & derivatives , Methamphetamine/chemistry , Methylamines/administration & dosage , Methylamines/chemistry , Pentanones/administration & dosage , Pentanones/chemistry , Rats , Rats, Wistar , Self Administration , Sex Factors , Telemetry
10.
Addict Biol ; 22(5): 1160-1168, 2017 Sep.
Article En | MEDLINE | ID: mdl-27046454

The recreational use of substituted cathinones continues to grow as a public health concern in the United States. Studies have shown that extended access to intravenous (i.v.) self-administration of stimulants, such as cocaine and methamphetamine, results in escalation of drug intake relative to shorter access; however, little is known about the impact of extended access on self-administration of entactogen class stimulants such as methylone and 4-methylmethcathinone (mephedrone). Male Wistar rats were randomly assigned to short-access (ShA, 2- h) and long-access (LgA, 6- h) groups and trained to self-administer methylone or mephedrone (0.5 mg/kg/infusion) using a fixed-ratio 1 response contingency. The methylone-trained groups were evaluated on a progressive-ratio (PR) procedure incorporating dose-substitution of methylone (0.125-2.5 mg/kg/infusion), mephedrone (0.125-2.5 mg/kg/infusion) or methamphetamine (MA; 0.01-0.5 mg/kg/infusion). Mephedrone-trained rats were similarly evaluated on a PR with mephedrone and MA. Rats trained with LgA to methylone and mephedrone earned more infusions during acquisition compared with ShA groups. Mephedrone-trained LgA rats reached significantly higher breakpoints than all other groups in mephedrone and MA PR tests. Methylone-trained LgA rats exhibited a rightward shift of the peak effective dose but no overall efficacy change compared with methylone-trained ShA rats. These findings show that the self-administration of mephedrone escalates under LgA conditions in a manner similar to traditional stimulants whereas escalation of 6 h intakes of methylone is not accompanied by differences in PR performance. Thus mephedrone represents the greater risk for dysregulated drug consumption.


Behavior, Animal , Central Nervous System Stimulants/administration & dosage , Conditioning, Operant , Methamphetamine/analogs & derivatives , Self Administration , Administration, Intravenous , Animals , Male , Methamphetamine/administration & dosage , Rats , Rats, Wistar , Time Factors
11.
Neuropsychopharmacology ; 41(11): 2759-71, 2016 10.
Article En | MEDLINE | ID: mdl-27277119

Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 µg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5-1.0 mg/kg), or MDPV (0.5-1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine.


Central Nervous System Stimulants/pharmacology , Electronic Nicotine Delivery Systems , Locomotion/drug effects , Reward , Administration, Inhalation , Animals , Benzazepines/administration & dosage , Benzazepines/pharmacology , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Central Nervous System Stimulants/administration & dosage , Conditioning, Operant , Dopamine Antagonists/administration & dosage , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Male , Methamphetamine/administration & dosage , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacology , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Self Administration , Telemetry , Synthetic Cathinone
12.
Neuropharmacology ; 109: 112-120, 2016 10.
Article En | MEDLINE | ID: mdl-27256501

Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis.


Analgesics, Non-Narcotic/administration & dosage , Dronabinol/administration & dosage , Drug Delivery Systems/methods , Electronic Nicotine Delivery Systems/methods , Administration, Inhalation , Analgesics, Non-Narcotic/blood , Animals , Body Temperature/drug effects , Body Temperature/physiology , Dose-Response Relationship, Drug , Dronabinol/blood , Female , Male , Pain Measurement/drug effects , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Rats, Wistar
13.
Neuropharmacology ; 99: 538-45, 2015 Dec.
Article En | MEDLINE | ID: mdl-26302654

The intravenous self-administration (IVSA) of 3,4-methylenedioxymethamphetamine (MDMA) is inconsistent in rats, with up to half of subjects failing to acquire reliable drug intake. It is unknown if this changes under long-access conditions (6 h sessions) under which the IVSA of cocaine and methamphetamine escalates. The entactogen class cathinone stimulants which exhibit MDMA-like monoamine effects in the nucleus accumbens, mephedrone (4-methylmethcathinone) and methylone (3,4-methylenedioxymethcathinone), may support more reliable IVSA but results have been mixed. This study was designed to directly compare the IVSA of these three compounds. Groups of male Wistar rats were trained to self-administer mephedrone, methylone or MDMA (0.5 mg/kg/inf) under a Fixed-Ratio (FR) 1 schedule of reinforcement for 14 sessions. Following the acquisition interval, animals were evaluated in FR (0.0, 0.125, 0.25, 0.5, 1.0, 2.5 mg/kg/inf) and Progressive Ratio (PR; 0.125, 1.0 mg/kg/inf) dose-substitution procedures. Long access conditions escalated MDMA intake over the 6 h session but not in the first 2 h. In short access, drug intake was significantly higher in mephedrone-trained rats compared with either the methylone-trained or MDMA-trained groups during acquisition. Mephedrone resulted in the highest intakes during FR and PR dose-substitution in MDMA- and mephedrone-trained groups. Overall it was found that mephedrone is a more effective reinforcer than methylone or MDMA and represents a higher risk for compulsive use.


Central Nervous System Stimulants/administration & dosage , Methamphetamine/analogs & derivatives , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Administration, Intravenous , Amphetamine-Related Disorders , Animals , Catheters, Indwelling , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Male , Methamphetamine/administration & dosage , Rats, Wistar , Self Administration , Sex Characteristics
14.
Psychopharmacology (Berl) ; 232(16): 3045-55, 2015 Aug.
Article En | MEDLINE | ID: mdl-25925780

RATIONALE: Numerous substituted cathinone drugs have appeared in recreational use. This variety is often a response to legal actions; the scheduling of 3,4-methylenedioxypyrovalerone (MDPV; "bath salts") in the USA was followed by the appearance of the closely related drug α-pyrrolidinopentiophenone (alpha-PVP; "flakka"). OBJECTIVES: This study aimed to directly compare the efficacy and potency of alpha-PVP with that of MDPV. METHODS: Groups of male Wistar rats were trained in the intravenous self-administration (IVSA) alpha-PVP or MDPV under a fixed-ratio 1 schedule of reinforcement. An additional group was examined for locomotor and body temperature responses to noncontingent administration of MDVP or alpha-PVP (1.0, 5.6, and 10.0 mg/kg, i.p.). RESULTS: Acquisition of alpha-PVP (0.1 mg/kg/infusion) IVSA resulted in low, yet consistent drug intake and excellent discrimination for the drug-paired lever. Dose substitution (0.05-0.25 mg/kg/infusion) under a fixed-ratio 1 schedule confirmed potency was similar to MDPV in prior studies. In direct comparison to MDPV (0.05 mg/kg/infusion), rats trained on alpha-PVP (0.05 mg/kg/infusion) responded for more infusions but demonstrated similar drug-lever discrimination by the end of acquisition. However, the dose-response (0.018-0.56 mg/kg/infusion) functions of these drugs under a progressive-ratio schedule of reinforcement reflected identical efficacy and potency. Peak locomotor responses to MDPV or alpha-PVP were observed after the 1.0 mg/kg, i.p. dose and lasted ∼2 h. Modest body temperature decreases were of similar magnitude (∼0.75 °C) for each compound. CONCLUSIONS: The potency and efficacy of MDPV and alpha-PVP were very similar across multiple assays, predicting that the abuse liability of alpha-PVP will be significant and similar to that of MDPV.


Benzodioxoles/administration & dosage , Designer Drugs/administration & dosage , Motor Activity/drug effects , Pentanones/administration & dosage , Pyrrolidines/administration & dosage , Reinforcement, Psychology , Animals , Body Temperature/drug effects , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar , Self Administration , Synthetic Cathinone
15.
Drug Alcohol Depend ; 151: 151-8, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25863714

BACKGROUND: Exercise influences drug craving and consumption in humans and drug self-administration in laboratory animals, but the effects can be variable. Improved understanding of how exercise affects drug intake or craving would enhance applications of exercise programs to human drug users attempting cessation. METHODS: Rats were trained in the intravenous self-administration (IVSA) of D-methamphetamine (METH; 0.05 mg/kg/inf), 3,4-methylenedioxymethamphetamine (MDMA; 0.5 mg/kg/inf) or methylone (0.5 mg/kg/inf). Once IVSA was established, the effect of ∼ 22 h of wheel access in the home cage on subsequent drug taking was assessed in a two cohort crossover design. RESULTS: Provision of home cage wheel access during the day prior to IVSA sessions significantly decreased the self-administration of METH, MDMA and methylone. At the individual level, there was no correlation between the amount a rat used the wheel and the size of the individual's decrease in drug intake. CONCLUSIONS: Wheel access can reduce self-administration of a variety of psychomotor stimulants. It does so immediately, i.e., without a need for weeks of exercise prior to drug access. This study therefore indicates that future mechanistic investigations should focus on acute effects of exercise. In sum, the results predict that exercise programs can be used to decrease stimulant drug use in individuals even with no exercise history and an established drug taking pattern.


Drug-Seeking Behavior/physiology , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacology , Motor Activity/physiology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Self Administration , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Female , Male , Methamphetamine/administration & dosage , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Rats
16.
Neuropharmacology ; 92: 90-7, 2015 May.
Article En | MEDLINE | ID: mdl-25600245

Male rats will intravenously self-administer (IVSA) the substituted cathinone stimulants ("bath salts") mephedrone (4-methylmethcathione) and methylone (3,4-methylenedioxymethcathinone) robustly, whereas the IVSA of 3,4-methylenedioxymethamphetamine (MDMA) is inconsistent in many rat models. There are no data available on the self-administration of these drugs in female rats, thus a study was undertaken to contrast them directly. Groups of female Wistar rats were trained to self-administer mephedrone, methylone or MDMA (0.5 mg/kg/inf) under a Fixed-Ratio (FR) 1 schedule of reinforcement for 14 sessions. Following the acquisition interval, animals were evaluated in FR (0.0, 0.125, 0.25, 0.5, 1.0, 2.5 mg/kg/inf) and PR (0.125, 1.0 mg/kg/inf) dose-substitution procedures. The results show that female rats acquired the self-administration of all three compounds with intakes in mephedrone-trained rats that were significantly higher than that of methylone-trained or MDMA-trained rats. In dose-substitution under either FR or PR contingencies, however, the potencies of all three drugs were similar within the original training groups. The mephedrone-trained animals exhibited higher intakes of all drugs during dose-substitution, indicating lasting consequences of the training drug. Abuse liability of these three compounds is therefore predicted to be similar in established stimulant users but may differ in liability if they are primary drugs of initiation.


Central Nervous System Stimulants/administration & dosage , Conditioning, Operant/drug effects , Hallucinogens/pharmacology , Methamphetamine/analogs & derivatives , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Administration, Intravenous , Animals , Discrimination, Psychological/drug effects , Dose-Response Relationship, Drug , Female , Methamphetamine/administration & dosage , Rats , Rats, Wistar , Reinforcement Schedule , Self Administration , Time Factors
17.
Br J Pharmacol ; 172(7): 1783-91, 2015 Apr.
Article En | MEDLINE | ID: mdl-25425111

BACKGROUND AND PURPOSE: Growing evidence shows cannabidiol (CBD) modulates some of the effects of Δ(9) -tetrahydrocannabinol (THC). CBD is a constituent of some strains of recreational cannabis but its content is highly variable. High CBD strains may have less memory-impairing effects than low-CBD strains and CBD can reverse behavioural effects of THC in monkeys. CBD/THC interactions in rodents are more complicated as CBD can attenuate or exacerbate the effects of THC. This study was undertaken to determine if CBD could reverse hypothermia or hypolocomotor effects caused by THC in rats. EXPERIMENTAL APPROACHES: Male Sprague-Dawley rats were prepared with radiotelemetry devices and then given doses of THC (10-30 mg·kg(-1) , i.p.) with or without CBD. Experiments determined the effect of simultaneous or 30 min pretreatment with CBD in a 1:1 ratio with THC, as well as the effect of CBD in a 3:1 ratio. Additional experiments determined the effects of pretreatment with the cannabinoid CB1 receptor antagonist SR141716 (rimonabant). KEY RESULTS: CBD did not attentuate THC-induced hypothermia or hypolocomotion but instead exaggerated these effects in some conditions. The antagonist SR141716 blocked hypolocomotor effects of THC for the first hour after injection and the hypothermia for 6 h; thus validating the pharmacological model. CONCLUSIONS AND IMPLICATIONS: There is no evidence from this study that elevated CBD content in cannabis could provide protection from the physiological effects of THC, in rats.


Cannabidiol/pharmacology , Dronabinol/pharmacology , Hypothermia/chemically induced , Motor Activity/drug effects , Animals , Body Temperature , Cannabinoid Receptor Antagonists/pharmacology , Male , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Rimonabant , Telemetry
18.
Br J Pharmacol ; 170(7): 1365-73, 2013 Dec.
Article En | MEDLINE | ID: mdl-23550724

BACKGROUND AND PURPOSE: Recent human studies suggest that recreational cannabis strains that are relatively high in cannabidiol (CBD) content produce less cognitive impairment than do strains with negligible CBD and similar Δ(9) tetrahydrocannabinol (THC) content. Self-selection in such studies means it is impossible to rule out additional variables which may determine both cannabis strain selection and basal cognitive performance level. Controlled laboratory studies can better determine a direct relationship. EXPERIMENTAL APPROACH: In this study, adult male rhesus monkeys were assessed on visuospatial Paired Associates Learning and Self-Ordered Spatial Search memory tasks, as well as additional tests of motivation and manual dexterity. Subjects were challenged with THC (0.2, 0.5 mg·kg(-1) , i.m.) in randomized order and evaluated in the presence or absence of 0.5 mg·kg(-1) CBD. KEY RESULTS: CBD attenuated the effects of THC on paired associates learning and a bimanual motor task without affecting the detrimental effects of THC on a Self-Ordered Spatial Search task of working memory. CBD did not significantly reverse THC-induced impairment of a progressive ratio or a rotating turntable task. CONCLUSIONS AND IMPLICATIONS: This study provides direct evidence that CBD can oppose the cognitive-impairing effects of THC and that it does so in a task-selective manner when administered simultaneously in a 1:1 ratio with THC. The addition of CBD to THC-containing therapeutic products may therefore help to ameliorate unwanted cognitive side-effects. LINKED ARTICLE: This article is commented on by Mechoulam and Parker, pp 1363-1364 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12400.


Behavior, Animal/drug effects , Cannabidiol/pharmacology , Cognition/drug effects , Dronabinol/toxicity , Memory Disorders/prevention & control , Memory/drug effects , Animals , Functional Laterality/drug effects , Macaca mulatta , Male , Memory Disorders/chemically induced , Memory Disorders/psychology , Models, Animal , Molecular Sequence Data , Motivation/drug effects , Motor Activity/drug effects , Time Factors
19.
Addict Biol ; 18(5): 786-99, 2013 Sep.
Article En | MEDLINE | ID: mdl-23363010

Recreational use of the drug 4-methylmethcathinone (mephedrone; 4-MMC) became increasingly popular in the United Kingdom in recent years, spurred in part by the fact that it was not criminalized until April 2010. Although several fatalities have been associated with consumption of 4-MMC and cautions for recreational users about its addictive potential have appeared on Internet forums, very little information about abuse liability for this drug is available. This study was conducted to determine if 4-MMC serves as a reinforcer in a traditional intravenous self-administration model. Groups of male Wistar and Sprague-Dawley rats were prepared with intravenous catheters and trained to self-administer 4-MMC in 1-hour sessions. Per-infusion doses of 0.5 and 1.0 mg/kg were consistently self-administered, resulting in greater than 80% discrimination for the drug-paired lever and mean intakes of about 2-3 mg/kg/hour. Dose-substitution studies after acquisition demonstrated that the number of responses and/or the total amount of drug self-administered varied as a function of dose. In addition, radiotelemetry devices were used to show that self-administered 4-MMC was capable of increasing locomotor activity (Wistar) and decreasing body temperature (Sprague-Dawley). Pharmacokinetic studies found that the T1/2 of 4-MMC was about 1 hour in vivo in rat plasma and 90 minutes using in vitro liver microsomal assays. This study provides evidence of stimulant-typical abuse liability for 4-MMC in the traditional pre-clinical self-administration model.


Central Nervous System Stimulants/pharmacology , Methamphetamine/analogs & derivatives , Reinforcement Schedule , Self Administration , Substance-Related Disorders , Analysis of Variance , Animals , Body Temperature Regulation/drug effects , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacokinetics , Dose-Response Relationship, Drug , Drug Substitution , Humans , Infusions, Intravenous , Male , Methamphetamine/administration & dosage , Methamphetamine/pharmacokinetics , Methamphetamine/pharmacology , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reward , Species Specificity
20.
Neuropharmacology ; 70: 12-8, 2013 Jul.
Article En | MEDLINE | ID: mdl-23321688

BACKGROUND: Analysis of the distribution of reaction times (RTs) in behavioral tasks can illustrate differences attributable to changes in attention, even when no change in mean RT is observed. Detrimental attentional effects of both acute and chronic exposure to alcohol may therefore be revealed by fitting RT data to an ex-Gaussian probability density function which identifies the proportion of long-RT responses. METHODS: Adolescent male rhesus macaques completed a 5-choice serial reaction time task (5CSRT) after acute alcohol consumption (up to 0.0, 1.0 and 1.5 g/kg). Monkeys were next divided into chronic alcohol (N = 5) and control groups (N = 5); the experimental group consumed 1.5-3.0 g/kg alcohol for 200 drinking sessions. Unintoxicated performance in the 5CSRT task was determined systematically across the study period and the effect of acute alcohol was redetermined after the 180th drinking session. The effect of extended abstinence from chronic alcohol was determined across 90 days. RESULTS: Acute alcohol exposure dose-dependently reduced the probability of longer RT responses without changing the mean or the standard deviation of the RT distribution. The RT distribution of control monkeys tightened across 10 months whereas that of the chronic alcohol group was unchanged. Discontinuation from chronic alcohol increased the probability of long RT responses with a difference from control animals observed after 30 days of discontinuation. CONCLUSIONS: Alcohol consumption selectively affected attention as reflected in the probability of long RT responses. Acute alcohol consumption focused attention, chronic alcohol consumption impaired the maturation of attention across the study period and alcohol discontinuation impaired attention.


Alcohol Drinking/psychology , Ethanol/pharmacology , Reaction Time/drug effects , Age Factors , Animals , Attention/drug effects , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Ethanol/administration & dosage , Macaca mulatta , Male
...