Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
PLoS One ; 18(9): e0292015, 2023.
Article in English | MEDLINE | ID: mdl-37733758

ABSTRACT

The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.


Subject(s)
AMP-Activated Protein Kinases , Heart Failure , Mice , Rats , Animals , Calcium , Myocytes, Cardiac , Adrenergic Agents , Calcium, Dietary
2.
J Biomed Sci Eng ; 15(5): 140-156, 2022 May.
Article in English | MEDLINE | ID: mdl-36507464

ABSTRACT

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.

3.
Autophagy ; 18(9): 2249-2251, 2022 09.
Article in English | MEDLINE | ID: mdl-35090371

ABSTRACT

If cellular reactive oxygen species (ROS) production surpasses the intracellular antioxidant capacity, thus altering the ROS homeostasis, the cell needs to eradicate faulty mitochondria responsible for these excessive ROS. We have shown that even moderate ROS production breaks the KEAP1-PGAM5 complex, inhibiting the proteasomal removal of PGAM5. This leads to an accumulation of PGAM5 interfering with PINK1 processing that sensitizes mitochondria to autophagic removal. We propose that such a negative feedback system maintains cell ROS homeostasis.


Subject(s)
Mitochondrial Proteins , Mitophagy , Autophagy , Feedback , Homeostasis , Kelch-Like ECH-Associated Protein 1 , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2 , Phosphoprotein Phosphatases/metabolism , Reactive Oxygen Species/metabolism
4.
Redox Biol ; 48: 102186, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34801863

ABSTRACT

When ROS production exceeds the cellular antioxidant capacity, the cell needs to eliminate the defective mitochondria responsible for excessive ROS production. It has been proposed that the removal of these defective mitochondria involves mitophagy, but the mechanism of this regulation remains unclear. Here, we demonstrate that moderate mitochondrial superoxide and hydrogen peroxide production oxidates KEAP1, thus breaking the interaction between this protein and PGAM5, leading to the inhibition of its proteasomal degradation. Accumulated PGAM5 interferes with the processing of the PINK1 in the mitochondria leading to the accumulation of PINK1 on the outer mitochondrial membrane. In turn, PINK1 promotes Parkin recruitment to mitochondria and sensitizes mitochondria for autophagic removal. We also demonstrate that inhibitors of the KEAP1-PGAM5 protein-protein interaction (including CPUY192018) mimic the effect of mitochondrial ROS and sensitize mitophagy machinery, suggesting that these inhibitors could be used as pharmacological regulators of mitophagy. Together, our results show that KEAP1/PGAM5 complex senses mitochondrially generated superoxide/hydrogen peroxide to induce mitophagy.

5.
Biol Sex Differ ; 12(1): 52, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535195

ABSTRACT

BACKGROUND: The AMP-activated protein kinase (AMPK) is a major regulator of cellular energetics which plays key role in acute metabolic response and in long-term adaptation to stress. Recent works have also suggested non-metabolic effects. METHODS: To decipher AMPK roles in the heart, we generated a cardio-specific inducible model of gene deletion of the main cardiac catalytic subunit of AMPK (Ampkα2) in mice. This allowed us to avoid the eventual impact of AMPK-KO in peripheral organs. RESULTS: Cardio-specific Ampkα2 deficiency led to a progressive left ventricular systolic dysfunction and the development of cardiac fibrosis in males. We observed a reduction in complex I-driven respiration without change in mitochondrial mass or in vitro complex I activity, associated with a rearrangement of the cardiolipins and reduced integration of complex I into the electron transport chain supercomplexes. Strikingly, none of these defects were present in females. Interestingly, suppression of estradiol signaling by ovariectomy partially mimicked the male sensitivity to AMPK loss, notably the cardiac fibrosis and the rearrangement of cardiolipins, but not the cardiac function that remained protected. CONCLUSION: Our results confirm the close link between AMPK and cardiac mitochondrial function, but also highlight links with cardiac fibrosis. Importantly, we show that AMPK is differently involved in these processes in males and females, which may have clinical implications for the use of AMPK activators in the treatment of heart failure.


Subject(s)
Cardiolipins , Heart Diseases , Animals , Female , Fibrosis , Male , Mice , Mice, Knockout , Mitochondria
6.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523852

ABSTRACT

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

7.
Front Cell Dev Biol ; 8: 581045, 2020.
Article in English | MEDLINE | ID: mdl-33134298

ABSTRACT

Adult striated muscle cells present highly organized structure with densely packed intracellular organelles and a very sparse cytosol accounting for only few percent of cell volume. These cells have a high and fluctuating energy demand that, in continuously working oxidative muscles, is fulfilled mainly by oxidative metabolism. ATP produced by mitochondria should be directed to the main energy consumers, ATPases of the excitation-contraction system; at the same time, ADP near ATPases should rapidly be eliminated. This is achieved by phosphotransfer kinases, the most important being creatine kinase (CK). Specific CK isoenzymes are located in mitochondria and in close proximity to ATPases, forming efficient energy shuttle between these structures. In addition to phosphotransfer kinases, ATP/ADP can be directly channeled between mitochondria co-localized with ATPases in a process called "direct adenine nucleotide channeling, DANC." This process is highly plastic so that inactivation of the CK system increases the participation of DANC to energy supply owing to the rearrangement of cell structure. The machinery for DANC is built during postnatal development in parallel with the increase in mitochondrial mass, organization, and complexification of the cell structure. Disorganization of cell architecture remodels the mitochondrial network and decreases the efficacy of DANC, showing that this process is intimately linked to cardiomyocyte structure. Accordingly, in heart failure, disorganization of the cell structure along with decrease in mitochondrial mass reduces the efficacy of DANC and together with alteration of the CK shuttle participates in energetic deficiency contributing to contractile failure.

8.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Article in English | MEDLINE | ID: mdl-31560161

ABSTRACT

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Subject(s)
DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscles/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Electron Transport Complex IV/metabolism , Female , Metabolome , Mice , Mice, Knockout , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Succinate Dehydrogenase/metabolism , Transcription Factors/genetics
9.
Int J Mol Sci ; 20(20)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658614

ABSTRACT

Heart failure is associated with profound alterations of energy metabolism thought to play a major role in the progression of this syndrome. SIRT1 is a metabolic sensor of cellular energy and exerts essential functions on energy metabolism, oxidative stress response, apoptosis, or aging. Importantly, SIRT1 deacetylates the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), the master regulator of energy metabolism involved in mitochondrial biogenesis and fatty acid utilization. However, the exact role of SIRT1 in controlling cardiac energy metabolism is still incompletely understood and conflicting results have been obtained. We generated a cardio-specific inducible model of Sirt1 gene deletion in mice (Sirt1ciKO) to decipher the role of SIRT1 in control conditions and following cardiac stress induced by pressure overload. SIRT1 deficiency induced a progressive cardiac dysfunction, without overt alteration in mitochondrial content or properties. Sixteen weeks after Sirt1 deletion an increase in mitochondrial reactive oxygen species (ROS) production and a higher rate of oxidative damage were observed, suggesting disruption of the ROS production/detoxification balance. Following pressure overload, cardiac dysfunction and alteration in mitochondrial properties were exacerbated in Sirt1ciKO mice. Overall the results demonstrate that SIRT1 plays a cardioprotective role on cardiac energy metabolism and thereby on cardiac function.


Subject(s)
Heart Diseases/genetics , Heart , Pressure , Sirtuin 1/genetics , Sirtuin 1/metabolism , Animals , Echocardiography , Fibrosis/pathology , Gene Deletion , Heart Diseases/metabolism , Heart Diseases/pathology , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Myocytes, Cardiac , Oxidative Stress , Reactive Oxygen Species , Tamoxifen/adverse effects
10.
Article in English | MEDLINE | ID: mdl-31474941

ABSTRACT

Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.

11.
J Hypertens ; 36(5): 1164-1177, 2018 05.
Article in English | MEDLINE | ID: mdl-29369849

ABSTRACT

OBJECTIVE: Energy metabolism shift from oxidative phosphorylation toward glycolysis in pulmonary artery smooth muscle cells (PASMCs) is suggested to be involved in their hyperproliferation in pulmonary arterial hypertension (PAH). Here, we studied the role of the deacetylase sirtuin1 (SIRT1) in energy metabolism regulation in PASMCs via various pathways including activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), master regulator of mitochondrial biogenesis. APPROACH AND RESULTS: Contents of PGC-1α and its downstream targets as well as markers of mitochondrial mass (voltage-dependent anion channel and citrate synthase) were diminished in human PAH PASMCs. These cells and platelet-derived growth factor-stimulated rat PASMCs demonstrated a shift in cellular acetylated/deacetylated state, as evidenced by the increase of the acetylated forms of SIRT1 targets: histone H1 and Forkhead box protein O1. Rat and human PASMC proliferation was potentiated by SIRT1 pharmacological inhibition or specific downregulation via short-interfering RNA. Moreover, after chronic hypoxia exposure, SIRT1 inducible knock out mice displayed a more intense vascular remodeling compared with their control littermates, which was associated with an increase in right ventricle pressure and hypertrophy. SIRT1 activator Stac-3 decreased the acetylation of histone H1 and Forkhead box protein O1 and strongly inhibited rat and human PASMC proliferation without affecting cell mortality. This effect was associated with the activation of mitochondrial biogenesis evidenced by higher expression of mitochondrial markers and downstream targets of PGC-1α. CONCLUSION: Altered acetylation/deacetylation balance as the result of SIRT1 inactivation is involved in the pathogenesis of PAH, and this enzyme could be a promising therapeutic target for PAH treatment.


Subject(s)
Cell Proliferation , Energy Metabolism , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/cytology , Sirtuin 1/metabolism , Acetylation/drug effects , Adaptor Proteins, Signal Transducing/pharmacology , Animals , Cell Proliferation/drug effects , Citrate (si)-Synthase/metabolism , Female , Forkhead Box Protein O1 , Histones/metabolism , Humans , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Male , Mice, Knockout , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Vascular Remodeling , Voltage-Dependent Anion Channels/metabolism
12.
Clin Sci (Lond) ; 131(9): 803-822, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28424375

ABSTRACT

It is increasingly acknowledged that a sex and gender specificity affects the occurrence, development, and consequence of a plethora of pathologies. Mitochondria are considered as the powerhouse of the cell because they produce the majority of energy-rich phosphate bonds in the form of adenosine tri-phosphate (ATP) but they also participate in many other functions like steroid hormone synthesis, reactive oxygen species (ROS) production, ionic regulation, and cell death. Adequate cellular energy supply and survival depend on mitochondrial life cycle, a process involving mitochondrial biogenesis, dynamics, and quality control via mitophagy. It appears that mitochondria are the place of marked sexual dimorphism involving mainly oxidative capacities, calcium handling, and resistance to oxidative stress. In turn, sex hormones regulate mitochondrial function and biogenesis. Mutations in genes encoding mitochondrial proteins are the origin of serious mitochondrial genetic diseases. Mitochondrial dysfunction is also an important parameter for a large panel of pathologies including neuromuscular disorders, encephalopathies, cardiovascular diseases (CVDs), metabolic disorders, neuropathies, renal dysfunction etc. Many of these pathologies present sex/gender specificity. Here we review the sexual dimorphism of mitochondria from different tissues and how this dimorphism takes part in the sex specificity of important pathologies mainly CVDs and neurological disorders.


Subject(s)
Adenosine Triphosphate/biosynthesis , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Reactive Oxygen Species/metabolism , Sex Factors , Apoptosis , Female , Humans , Male , Mitochondria/physiology , Mitochondrial Diseases/physiopathology , Models, Biological
13.
J Mol Cell Cardiol ; 102: 34-44, 2017 01.
Article in English | MEDLINE | ID: mdl-27876471

ABSTRACT

PGC-1α, a key regulator of energy metabolism, seems to be a relevant therapeutic target to rectify the energy deficit observed in heart failure (HF). Since our previous work has shown positive effects of cobalamin (Cb) on PGC-1α cascade, we investigate the protective role of Cb in pressure overload-induced myocardial dysfunction. Mice were fed with normal diet (ND) or with Cb and folate supplemented diet (SD) 3weeks before and 4weeks after transverse aortic constriction (TAC). At the end, left ventricle hypertrophy and drop of ejection fraction were significantly lower in SD mice than in ND mice. Alterations in mitochondrial oxidative capacity, fatty acid oxidation and mitochondrial biogenesis transcription cascade were markedly improved by SD. In SD-TAC mice, lower expression level of the acetyltransferase GCN5 and upregulation of the methyltransferase PRMT1 were associated with a lower protein acetylation and a higher protein methylation levels. This was accompanied by a sustained expression of genes involved in mitochondrial biogenesis transcription cascade (Tfam, Nrf2, Cox1 and Cox4) after TAC in SD mice, suggesting a preserved activation of PGC-1α; this could be at least partly due to corrected acetylation/methylation status of this co-activator. The beneficial effect of the treatment would not be due to an effect of Cb and folate on oxidative stress or on homocysteinemia, which were unchanged by SD. These results showed that Cb and folate could protect the failing heart by preserving energy status through maintenance of mitochondrial biogenesis. It reinforces the concept of a metabolic therapy of HF.


Subject(s)
Folic Acid/pharmacology , Heart Failure/metabolism , Heart Failure/physiopathology , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardial Contraction/drug effects , Vitamin B 12/pharmacology , Animals , Biomarkers , Cells, Cultured , Dietary Supplements , Disease Models, Animal , Energy Metabolism , Heart Failure/pathology , Hyperhomocysteinemia/metabolism , Mice , Models, Biological , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Oxidative Stress
14.
PLoS Biol ; 14(7): e1002511, 2016 07.
Article in English | MEDLINE | ID: mdl-27434582

ABSTRACT

Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.


Subject(s)
Mitochondria/metabolism , Mitochondrial Dynamics , Neurogenesis , Neurons/metabolism , Animals , Animals, Newborn , Brain/cytology , Brain/metabolism , Calcium/metabolism , Cells, Cultured , Endoplasmic Reticulum Stress/genetics , Fluorescence Resonance Energy Transfer , Homeostasis , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Microscopy, Confocal , Mitochondria/genetics , Mitophagy/genetics , Neurons/cytology , PC12 Cells , RNA Interference , Rats , Rats, Wistar , Time-Lapse Imaging/methods , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism
15.
Biol Sex Differ ; 6: 20, 2015.
Article in English | MEDLINE | ID: mdl-26478810

ABSTRACT

BACKGROUND: Imbalance in lipid metabolism and membrane lipid homeostasis has been observed in numerous diseases including heart failure and cardiotoxicity. Growing evidence links phospholipid alterations especially cardiolipins (CLs) to defects in mitochondrial function and energy metabolism in heart failure. We have shown recently that doxorubicin cardiotoxicity is more severe in male than female Wistar rats. We aimed to study whether this sex specificity is linked to differences in cardiac phospholipid profiles. RESULTS: Adult male and female rats were injected 2 mg/kg doxorubicin weekly for 7 weeks. Cardiac phospholipid molecular species were determined by liquid chromatography coupled with mass spectrometry fragmentation (LC)/MS(n). Sex difference in phosphatidylethanolamine and phosphatidylcholine species containing docosahexaenoic and docosapentaenoic acyl chains was observed, females having more than males. In both sexes, doxorubicin induced an important loss of the main CL(18:2)4, while the level of monolysocardiolipin MLCL(18:2)3 remained stable. However, a severe remodelling appeared in treated rats with the longest CL acyl chains in doxorubicin-treated females, which might compensate for the loss of tetra-linoleoyl CL. The level of oxidized cardiolipin was not particularly increased after doxorubicin treatment. Finally, expression of genes involved in the biosynthesis of fatty acid appeared to be decreased in doxorubicin-treated males. CONCLUSIONS: These results emphasize for the first time the cardiac remodelling in the phospholipid classes after doxorubicin treatment. These observations suggest that doxorubicin has a sex-specific impact on the heart phospholipidome especially on cardiolipin, an essential mitochondrial lipid. Further studies are needed to better understand the roles of lipids in the anthracycline cardiotoxicity and sex differences, but phospholipid cardioprotection seems a valuable new additive therapeutic strategy for anthracycline cardiotoxicity.

16.
Cell Calcium ; 58(1): 79-85, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25467968

ABSTRACT

There are a number of known and suspected channels and exchangers in the endoplasmic reticulum that may participate in potassium flux across its membrane. They include trimeric intracellular cation channels permeable for potassium, ATP-sensitive potassium channels, calcium-activated potassium channels and the potassium-hydrogen exchanger. Apart from trimeric intracellular cation channels, which are specific to the endoplasmic reticulum, other potassium channels are also expressed in the plasma membrane and/or mitochondria, and their specific role in the endoplasmic reticulum has not yet been fully established. In addition to these potassium-selective channels, the ryanodine receptor and, potentially, the inositol 1,4,5-trisphosphate receptor are permeable to potassium ions. Also, the role of potassium fluxes across the endoplasmic reticulum membrane has remained elusive. It has been proposed that their main role is to balance the charge movement that occurs during calcium release and uptake from or to the endoplasmic reticulum. This review aims to summarize current knowledge on endoplasmic reticulum potassium channels and fluxes and their potential role in endoplasmic reticulum calcium uptake and release.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Potassium/metabolism , Animals , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Potassium Channels/chemistry , Potassium Channels/metabolism , Potassium-Hydrogen Antiporters/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
17.
Circ Heart Fail ; 8(1): 98-108, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25420486

ABSTRACT

BACKGROUND: Cardiovascular diseases are the major cause of mortality among both men and women with a lower incidence in women before menopause. The clinical use of doxorubicin, widely used as an antineoplastic agent, is markedly hampered by severe cardiotoxicity. Even if there is a significant sex difference in incidence of cardiovascular disease at the adult stage, it is not known whether a difference in doxorubicin-related cardiotoxicity between men and women also exists. The objective of this work was to explore the cardiac side effects of doxorubicin in adult rats and decipher whether signaling pathways involved in cardiac toxicity differ between sexes. METHODS AND RESULTS: After 7 weeks of doxorubicin (2 mg/kg per week), males developed major signs of cardiomyopathy with cardiac atrophy, reduced left ventricular ejection fraction and 50% mortality. In contrast, no female died and their left ventricular ejection fraction was only moderately affected. Surprisingly, neither global oxidation levels nor the antioxidant response nor the apoptosis signaling pathways were altered by doxorubicin. However, the level of total adenosine monophosphate-activated protein kinase was severely decreased only in males. Moreover, markers of mitochondrial biogenesis and cardiolipin content were strongly reduced only in males. To analyze the onset of the pathology, maximal oxygen consumption rate of left ventricular permeabilized fibers after 4 weeks of treatment was reduced only in doxorubicin-treated males. CONCLUSIONS: Altogether, these results clearly evidence sex differences in doxorubicin toxicity. Cardiac mitochondrial dysfunction and adenosine monophosphate-activated protein kinase seem as critical sites of sex differences in cardiotoxicity as evidenced by significant statistical interactions between sex and treatment effects.


Subject(s)
Doxorubicin/toxicity , Energy Metabolism/drug effects , Heart Failure/chemically induced , Ventricular Function, Left/drug effects , Animals , Body Mass Index , Cardiotoxicity , Disease Models, Animal , Female , Follow-Up Studies , Heart Failure/pathology , Heart Failure/physiopathology , Male , Rats , Rats, Wistar , Sex Factors
18.
Front Physiol ; 4: 102, 2013.
Article in English | MEDLINE | ID: mdl-23675354

ABSTRACT

Mitochondrial dynamics is a recent topic of research in the field of cardiac physiology. The study of mechanisms involved in the morphological changes and in the mobility of mitochondria is legitimate since the adult cardiomyocytes possess numerous mitochondria which occupy at least 30% of cell volume. However, architectural constraints exist in the cardiomyocyte that limit mitochondrial movements and communication between adjacent mitochondria. Still, the proteins involved in mitochondrial fusion and fission are highly expressed in these cells and could be involved in different processes important for the cardiac function. For example, they are required for mitochondrial biogenesis to synthesize new mitochondria and for the quality-control of the organelles. They are also involved in inner membrane organization and may play a role in apoptosis. More generally, change in mitochondrial morphology can have consequences in the functioning of the respiratory chain, in the regulation of the mitochondrial permeability transition pore (MPTP), and in the interactions with other organelles. Furthermore, the proteins involved in fusion and fission of mitochondria are altered in cardiac pathologies such as ischemia/reperfusion or heart failure (HF), and appear to be valuable targets for pharmacological therapies. Thus, mitochondrial dynamics deserves particular attention in cardiac research. The present review draws up a report of our knowledge on these phenomena.

19.
J Cell Sci ; 126(Pt 10): 2187-97, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23525002

ABSTRACT

Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.


Subject(s)
Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Neurodegenerative Diseases/metabolism , Neurons/ultrastructure , rho GTP-Binding Proteins/metabolism , Animals , Humans , Huntingtin Protein , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Size/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , PC12 Cells , Rats , Rats, Wistar , Transgenes/genetics , rho GTP-Binding Proteins/genetics , tau Proteins/genetics , tau Proteins/metabolism
20.
Cardiovasc Res ; 94(3): 408-17, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22406748

ABSTRACT

AIMS: The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue. METHODS AND RESULTS: In mutant mice, cardiac function assessed by echocardiography was not significantly different from that of the Opa1(+/+). Electron and fluorescence microscopy revealed altered morphology of the Opa1(+/-) mice mitochondrial network; unexpectedly, mitochondria were larger with the presence of clusters of fused mitochondria and altered cristae. In permeabilized mutant ventricular fibres, mitochondrial functional properties were maintained, but direct energy channelling between mitochondria and myofilaments was weakened. Importantly, the mitochondrial permeability transition pore (PTP) opening in isolated permeabilized cardiomyocytes and in isolated mitochondria was significantly less sensitive to mitochondrial calcium accumulation. Finally, 6 weeks after transversal aortic constriction, Opa1(+/-) hearts demonstrated hypertrophy almost two-fold higher (P< 0.01) than in wild-type mice with altered ejection fraction (decrease in 43 vs. 22% in Opa1(+/+) mice, P< 0.05). CONCLUSIONS: These results suggest that, in adult cardiomyocytes, OPA1 plays an important role in mitochondrial morphology and PTP functioning. These properties may be critical for cardiac function under conditions of chronic pressure overload.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Myocytes, Cardiac/cytology , Optic Atrophy, Autosomal Dominant/physiopathology , Adaptation, Biological , Animals , Down-Regulation , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/ultrastructure , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Myocytes, Cardiac/metabolism , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/metabolism , Permeability , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...